Visual Servoing Platform  version 3.2.0 under development (2019-01-22)
servoSimuPoint2DCamVelocity2.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a 2D visual servoing on a point.
33  *
34  * Authors:
35  * Eric Marchand
36  * Fabien Spindler
37  *
38  *****************************************************************************/
39 
56 #include <stdio.h>
57 #include <stdlib.h>
58 
59 #include <visp3/core/vpHomogeneousMatrix.h>
60 #include <visp3/core/vpMath.h>
61 #include <visp3/io/vpParseArgv.h>
62 #include <visp3/robot/vpSimulatorCamera.h>
63 #include <visp3/visual_features/vpFeatureBuilder.h>
64 #include <visp3/visual_features/vpFeaturePoint.h>
65 #include <visp3/vs/vpServo.h>
66 
67 // List of allowed command line options
68 #define GETOPTARGS "h"
69 
70 void usage(const char *name, const char *badparam);
71 bool getOptions(int argc, const char **argv);
72 
81 void usage(const char *name, const char *badparam)
82 {
83  fprintf(stdout, "\n\
84 Simulation of a 2D visual servoing on a point:\n\
85 - eye-in-hand control law,\n\
86 - articular velocity are computed,\n\
87 - without display.\n\
88 \n\
89 SYNOPSIS\n\
90  %s [-h]\n", name);
91 
92  fprintf(stdout, "\n\
93 OPTIONS: Default\n\
94 \n\
95  -h\n\
96  Print the help.\n");
97 
98  if (badparam)
99  fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
100 }
101 
112 bool getOptions(int argc, const char **argv)
113 {
114  const char *optarg_;
115  int c;
116  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
117 
118  switch (c) {
119  case 'h':
120  usage(argv[0], NULL);
121  return false;
122  break;
123 
124  default:
125  usage(argv[0], optarg_);
126  return false;
127  break;
128  }
129  }
130 
131  if ((c == 1) || (c == -1)) {
132  // standalone param or error
133  usage(argv[0], NULL);
134  std::cerr << "ERROR: " << std::endl;
135  std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
136  return false;
137  }
138 
139  return true;
140 }
141 
142 int main(int argc, const char **argv)
143 {
144  try {
145  // Read the command line options
146  if (getOptions(argc, argv) == false) {
147  exit(-1);
148  }
149 
150  vpServo task;
151  vpSimulatorCamera robot;
152 
153  std::cout << std::endl;
154  std::cout << "-------------------------------------------------------" << std::endl;
155  std::cout << " Test program for vpServo " << std::endl;
156  std::cout << " Eye-in-hand task control, articular velocity are computed" << std::endl;
157  std::cout << " Simulation " << std::endl;
158  std::cout << " task : servo a point " << std::endl;
159  std::cout << "-------------------------------------------------------" << std::endl;
160  std::cout << std::endl;
161 
162  // sets the initial camera location
164  cMo[0][3] = 0.1;
165  cMo[1][3] = 0.2;
166  cMo[2][3] = 2;
167  // Compute the position of the object in the world frame
168  vpHomogeneousMatrix wMc, wMo;
169  robot.getPosition(wMc);
170  wMo = wMc * cMo;
171 
172  // sets the point coordinates in the world frame
173  vpPoint point(0, 0, 0);
174 
175  // computes the point coordinates in the camera frame and its 2D
176  // coordinates
177  point.track(cMo);
178 
179  // sets the current position of the visual feature
180  vpFeaturePoint p;
181  vpFeatureBuilder::create(p, point); // retrieve x,y and Z of the vpPoint structure
182 
183  // sets the desired position of the visual feature
184  vpFeaturePoint pd;
185  pd.buildFrom(0, 0, 1);
186 
187  // define the task
188  // - we want an eye-in-hand control law
189  // - articular velocity are computed
192 
193  // Set the position of the camera in the end-effector frame
195  vpVelocityTwistMatrix cVe(cMe);
196  task.set_cVe(cVe);
197 
198  // Set the Jacobian (expressed in the end-effector frame)
199  vpMatrix eJe;
200  robot.get_eJe(eJe);
201  task.set_eJe(eJe);
202 
203  // we want to see a point on a point
204  task.addFeature(p, pd);
205 
206  // set the gain
207  task.setLambda(1);
208  // Display task information
209  task.print();
210 
211  unsigned int iter = 0;
212  // loop
213  while (iter++ < 100) {
214  std::cout << "---------------------------------------------" << iter << std::endl;
215  vpColVector v;
216 
217  // Set the Jacobian (expressed in the end-effector frame)
218  // since q is modified eJe is modified
219  robot.get_eJe(eJe);
220  task.set_eJe(eJe);
221 
222  // get the robot position
223  robot.getPosition(wMc);
224  // Compute the position of the camera wrt the object frame
225  cMo = wMc.inverse() * wMo;
226 
227  // new point position
228  point.track(cMo);
229  vpFeatureBuilder::create(p, point); // retrieve x,y and Z of the vpPoint structure
230  pd.buildFrom(0, 0, 1); // Since vpServo::MEAN interaction matrix is
231  // used, we need to update the desired feature at
232  // each iteration
233 
234  // compute the control law
235  v = task.computeControlLaw();
236 
237  // send the camera velocity to the controller
239 
240  std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
241  }
242 
243  // Display task information
244  task.print();
245  task.kill();
246  return EXIT_SUCCESS;
247  } catch (const vpException &e) {
248  std::cout << "Catch a ViSP exception: " << e << std::endl;
249  return EXIT_FAILURE;
250  }
251 }
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:104
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
Implementation of an homogeneous matrix and operations on such kind of matrices.
Class that defines the simplest robot: a free flying camera.
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:508
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, const unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:497
error that can be emited by ViSP classes.
Definition: vpException.h:71
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
Class that defines what is a point.
Definition: vpPoint.h:58
void kill()
Definition: vpServo.cpp:192
vpColVector getError() const
Definition: vpServo.h:282
vpColVector computeControlLaw()
Definition: vpServo.cpp:935
void setLambda(double c)
Definition: vpServo.h:406
vpHomogeneousMatrix getPosition() const
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:574
void buildFrom(const double x, const double y, const double Z)
Implementation of column vector and the associated operations.
Definition: vpColVector.h:72
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:450
vpHomogeneousMatrix inverse() const
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:313
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
void get_eJe(vpMatrix &eJe)
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:223