Visual Servoing Platform  version 3.6.1 under development (2024-02-13)
vpExponentialMap.h
1 /*
2  * ViSP, open source Visual Servoing Platform software.
3  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
4  *
5  * This software is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  * See the file LICENSE.txt at the root directory of this source
10  * distribution for additional information about the GNU GPL.
11  *
12  * For using ViSP with software that can not be combined with the GNU
13  * GPL, please contact Inria about acquiring a ViSP Professional
14  * Edition License.
15  *
16  * See https://visp.inria.fr for more information.
17  *
18  * This software was developed at:
19  * Inria Rennes - Bretagne Atlantique
20  * Campus Universitaire de Beaulieu
21  * 35042 Rennes Cedex
22  * France
23  *
24  * If you have questions regarding the use of this file, please contact
25  * Inria at visp@inria.fr
26  *
27  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
28  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
29  *
30  * Description:
31  * Exponential map.
32  */
33 
39 #ifndef vpExponentialMap_h
40 #define vpExponentialMap_h
41 
42 #include <visp3/core/vpColVector.h>
43 #include <visp3/core/vpHomogeneousMatrix.h>
44 
87 class VISP_EXPORT vpExponentialMap
88 {
89 public:
90  static vpHomogeneousMatrix direct(const vpColVector &v);
91  static vpHomogeneousMatrix direct(const vpColVector &v, const double &delta_t);
92  static vpColVector inverse(const vpHomogeneousMatrix &M);
93  static vpColVector inverse(const vpHomogeneousMatrix &M, const double &delta_t);
94 };
95 #endif
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
Direct or inverse exponential map computation.
Implementation of an homogeneous matrix and operations on such kind of matrices.