Visual Servoing Platform  version 3.6.1 under development (2024-11-21)
ukf-nonlinear-example.cpp

Example of a simple non-linear use-case of the Unscented Kalman Filter (UKF).

The system we are interested in is an aircraft flying in the sky and observed by a radar station. Its velocity is not completely constant: a Gaussian noise is added to the velocity to simulate the effect of wind on the motion of the aircraft.

We consider the plan perpendicular to the ground and passing by both the radar station and the aircraft. The x-axis corresponds to the position on the ground and the y-axis to the altitude.

The state vector of the UKF corresponds to a constant velocity model and can be written as:

\[ \begin{array}{lcl} \textbf{x}[0] &=& x \\ \textbf{x}[1] &=& \dot{x} \\ \textbf{x}[1] &=& y \\ \textbf{x}[2] &=& \dot{y} \end{array} \]

The measurement $ \textbf{z} $ corresponds to the distance and angle between the ground and the aircraft observed by the radar station. Be $ p_x $ and $ p_y $ the position of the radar station along the x and y axis, the measurement vector can be written as:

\[ \begin{array}{lcl} \textbf{z}[0] &=& \sqrt{(p_x^i - x)^2 + (p_y^i - y)^2} \\ \textbf{z}[1] &=& \tan^{-1}{\frac{y - p_y}{x - p_x}} \end{array} \]

Some noise is added to the measurement vector to simulate a sensor which is not perfect.

The mean of several angles must be computed in the Unscented Transform. The definition we chose to use is the following:

$ mean(\boldsymbol{\theta}) = atan2 (\frac{\sum_{i=1}^n \sin{\theta_i}}{n}, \frac{\sum_{i=1}^n \cos{\theta_i}}{n}) $

As the Unscented Transform uses a weighted mean, the actual implementation of the weighted mean of several angles is the following:

$ mean_{weighted}(\boldsymbol{\theta}) = atan2 (\sum_{i=1}^n w_m^i \sin{\theta_i}, \sum_{i=1}^n w_m^i \cos{\theta_i}) $

where $ w_m^i $ is the weight associated to the $ i^{th} $ measurements for the weighted mean.

Additionnally, the addition and subtraction of angles must be carefully done, as the result must stay in the interval $[- \pi ; \pi ]$ or $[0 ; 2 \pi ]$ . We decided to use the interval $[- \pi ; \pi ]$ .

/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#include <iostream>
// UKF includes
#include <visp3/core/vpUKSigmaDrawerMerwe.h>
#include <visp3/core/vpUnscentedKalman.h>
// ViSP includes
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpGaussRand.h>
#ifdef VISP_HAVE_DISPLAY
#include <visp3/gui/vpPlot.h>
#endif
#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
namespace
{
vpColVector fx(const vpColVector &chi, const double &dt)
{
vpColVector point(4);
point[0] = chi[1] * dt + chi[0];
point[1] = chi[1];
point[2] = chi[3] * dt + chi[2];
point[3] = chi[3];
return point;
}
double normalizeAngle(const double &angle)
{
double angleIn0to2pi = vpMath::modulo(angle, 2. * M_PI);
double angleInMinPiPi = angleIn0to2pi;
if (angleInMinPiPi > M_PI) {
// Substract 2 PI to be in interval [-Pi; Pi]
angleInMinPiPi -= 2. * M_PI;
}
return angleInMinPiPi;
}
vpColVector measurementMean(const std::vector<vpColVector> &measurements, const std::vector<double> &wm)
{
const unsigned int nbPoints = static_cast<unsigned int>(measurements.size());
const unsigned int sizeMeasurement = measurements[0].size();
vpColVector mean(sizeMeasurement, 0.);
double sumCos(0.);
double sumSin(0.);
for (unsigned int i = 0; i < nbPoints; ++i) {
mean[0] += wm[i] * measurements[i][0];
sumCos += wm[i] * std::cos(measurements[i][1]);
sumSin += wm[i] * std::sin(measurements[i][1]);
}
mean[1] = std::atan2(sumSin, sumCos);
return mean;
}
vpColVector measurementResidual(const vpColVector &meas, const vpColVector &toSubtract)
{
vpColVector res = meas - toSubtract;
res[1] = normalizeAngle(res[1]);
return res;
}
}
{
public:
vpRadarStation(const double &x, const double &y, const double &range_std, const double &elev_angle_std)
: m_x(x)
, m_y(y)
, m_rngRange(range_std, 0., 4224)
, m_rngElevAngle(elev_angle_std, 0., 2112)
{ }
vpColVector state_to_measurement(const vpColVector &chi)
{
vpColVector meas(2);
double dx = chi[0] - m_x;
double dy = chi[2] - m_y;
meas[0] = std::sqrt(dx * dx + dy * dy);
meas[1] = std::atan2(dy, dx);
return meas;
}
vpColVector measureGT(const vpColVector &pos)
{
double dx = pos[0] - m_x;
double dy = pos[1] - m_y;
double range = std::sqrt(dx * dx + dy * dy);
double elevAngle = std::atan2(dy, dx);
vpColVector measurements(2);
measurements[0] = range;
measurements[1] = elevAngle;
return measurements;
}
vpColVector measureWithNoise(const vpColVector &pos)
{
vpColVector measurementsGT = measureGT(pos);
vpColVector measurementsNoisy = measurementsGT;
measurementsNoisy[0] += m_rngRange();
measurementsNoisy[1] += m_rngElevAngle();
return measurementsNoisy;
}
private:
double m_x; // The position on the ground of the radar
double m_y; // The altitude of the radar
vpGaussRand m_rngRange; // Noise simulator for the range measurement
vpGaussRand m_rngElevAngle; // Noise simulator for the elevation angle measurement
};
{
public:
vpACSimulator(const vpColVector &X0, const vpColVector &vel, const double &vel_std)
: m_pos(X0)
, m_vel(vel)
, m_rngVel(vel_std, 0.)
{
}
vpColVector update(const double &dt)
{
vpColVector dx = m_vel * dt;
dx[0] += m_rngVel() * dt;
dx[1] += m_rngVel() * dt;
m_pos += dx;
return m_pos;
}
private:
vpColVector m_pos; // Position of the simulated aircraft
vpColVector m_vel; // Velocity of the simulated aircraft
vpGaussRand m_rngVel; // Random generator for slight variations of the velocity of the aircraft
};
int main(const int argc, const char *argv[])
{
bool opt_useDisplay = true;
for (int i = 1; i < argc; ++i) {
std::string arg(argv[i]);
if (arg == "-d") {
opt_useDisplay = false;
}
else if ((arg == "-h") || (arg == "--help")) {
std::cout << "SYNOPSIS" << std::endl;
std::cout << " " << argv[0] << " [-d][-h]" << std::endl;
std::cout << std::endl << std::endl;
std::cout << "DETAILS" << std::endl;
std::cout << " -d" << std::endl;
std::cout << " Deactivate display." << std::endl;
std::cout << std::endl;
std::cout << " -h, --help" << std::endl;
return 0;
}
}
const double dt = 3.; // Period of 3s
const double sigmaRange = 5; // Standard deviation of the range measurement: 5m
const double sigmaElevAngle = vpMath::rad(0.5); // Standard deviation of the elevation angle measurent: 0.5deg
const double stdevAircraftVelocity = 0.2; // Standard deviation of the velocity of the simulated aircraft, to make it deviate a bit from the constant velocity model
const double gt_X_init = -500.; // Ground truth initial position along the X-axis, in meters
const double gt_Y_init = 1000.; // Ground truth initial position along the Y-axis, in meters
const double gt_vX_init = 100.; // Ground truth initial velocity along the X-axis, in meters
const double gt_vY_init = 5.; // Ground truth initial velocity along the Y-axis, in meters
// Initialize the attributes of the UKF
std::shared_ptr<vpUKSigmaDrawerAbstract> drawer = std::make_shared<vpUKSigmaDrawerMerwe>(4, 0.1, 2., -1.);
vpMatrix R(2, 2, 0.); // The covariance of the noise introduced by the measurement
R[0][0] = sigmaRange*sigmaRange;
R[1][1] = sigmaElevAngle*sigmaElevAngle;
const double processVariance = 0.1;
vpMatrix Q(4, 4, 0.); // The covariance of the process
vpMatrix Q1d(2, 2); // The covariance of a process whose states are {x, dx/dt} and for which the variance is 1
Q1d[0][0] = std::pow(dt, 3) / 3.;
Q1d[0][1] = std::pow(dt, 2)/2.;
Q1d[1][0] = std::pow(dt, 2)/2.;
Q1d[1][1] = dt;
Q.insert(Q1d, 0, 0);
Q.insert(Q1d, 2, 2);
Q = Q * processVariance;
vpMatrix P0(4, 4); // The initial guess of the process covariance
P0.eye(4, 4);
P0[0][0] = std::pow(300, 2);
P0[1][1] = std::pow(30, 2);
P0[2][2] = std::pow(150, 2);
P0[3][3] = std::pow(30, 2);
vpColVector X0(4);
X0[0] = 0.9 * gt_X_init; // x, i.e. 10% of error with regard to ground truth
X0[1] = 0.9 * gt_vX_init; // dx/dt, i.e. 10% of error with regard to ground truth
X0[2] = 0.9 * gt_Y_init; // y, i.e. 10% of error with regard to ground truth
X0[3] = 0.9 * gt_vY_init; // dy/dt, i.e. 10% of error with regard to ground truth
vpRadarStation radar(0., 0., sigmaRange, sigmaElevAngle);
using std::placeholders::_1;
// Initialize the UKF
vpUnscentedKalman ukf(Q, R, drawer, f, h);
ukf.init(X0, P0);
ukf.setMeasurementMeanFunction(measurementMean);
ukf.setMeasurementResidualFunction(measurementResidual);
#ifdef VISP_HAVE_DISPLAY
vpPlot *plot = nullptr;
if (opt_useDisplay) {
// Initialize the plot
plot = new vpPlot(4);
plot->initGraph(0, 2);
plot->setTitle(0, "Position along X-axis");
plot->setUnitX(0, "Time (s)");
plot->setUnitY(0, "Position (m)");
plot->setLegend(0, 0, "GT");
plot->setLegend(0, 1, "Filtered");
plot->initGraph(1, 2);
plot->setTitle(1, "Velocity along X-axis");
plot->setUnitX(1, "Time (s)");
plot->setUnitY(1, "Velocity (m/s)");
plot->setLegend(1, 0, "GT");
plot->setLegend(1, 1, "Filtered");
plot->initGraph(2, 2);
plot->setTitle(2, "Position along Y-axis");
plot->setUnitX(2, "Time (s)");
plot->setUnitY(2, "Position (m)");
plot->setLegend(2, 0, "GT");
plot->setLegend(2, 1, "Filtered");
plot->initGraph(3, 2);
plot->setTitle(3, "Velocity along Y-axis");
plot->setUnitX(3, "Time (s)");
plot->setUnitY(3, "Velocity (m/s)");
plot->setLegend(3, 0, "GT");
plot->setLegend(3, 1, "Filtered");
}
#endif
// Initialize the simulation
vpColVector ac_pos(2);
ac_pos[0] = gt_X_init;
ac_pos[1] = gt_Y_init;
vpColVector ac_vel(2);
ac_vel[0] = gt_vX_init;
ac_vel[1] = gt_vY_init;
vpACSimulator ac(ac_pos, ac_vel, stdevAircraftVelocity);
vpColVector gt_Xprec = ac_pos;
vpColVector gt_Vprec = ac_vel;
for (int i = 0; i < 500; ++i) {
// Perform the measurement
vpColVector gt_X = ac.update(dt);
vpColVector gt_V = (gt_X - gt_Xprec) / dt;
vpColVector z = radar.measureWithNoise(gt_X);
// Use the UKF to filter the measurement
ukf.filter(z, dt);
vpColVector Xest = ukf.getXest();
#ifdef VISP_HAVE_DISPLAY
if (opt_useDisplay) {
// Plot the ground truth, measurement and filtered state
plot->plot(0, 0, i, gt_X[0]);
plot->plot(0, 1, i, Xest[0]);
plot->plot(1, 0, i, gt_V[0]);
plot->plot(1, 1, i, Xest[1]);
plot->plot(2, 0, i, gt_X[1]);
plot->plot(2, 1, i, Xest[2]);
plot->plot(3, 0, i, gt_V[1]);
plot->plot(3, 1, i, Xest[3]);
}
#endif
gt_Xprec = gt_X;
gt_Vprec = gt_V;
}
if (opt_useDisplay) {
std::cout << "Press Enter to quit..." << std::endl;
std::cin.get();
}
#ifdef VISP_HAVE_DISPLAY
if (opt_useDisplay) {
delete plot;
}
#endif
vpColVector X_GT({ gt_Xprec[0], gt_Vprec[0], gt_Xprec[1], gt_Vprec[1] });
vpColVector finalError = ukf.getXest() - X_GT;
const double maxError = 2.5;
if (finalError.frobeniusNorm() > maxError) {
std::cerr << "Error: max tolerated error = " << maxError << ", final error = " << finalError.frobeniusNorm() << std::endl;
return -1;
}
return 0;
}
#else
int main()
{
std::cout << "This example is only available if you compile ViSP in C++11 standard or higher." << std::endl;
return 0;
}
#endif
Class to simulate a flying aircraft.
unsigned int size() const
Return the number of elements of the 2D array.
Definition: vpArray2D.h:349
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
double frobeniusNorm() const
Class for generating random number with normal probability density.
Definition: vpGaussRand.h:117
static double rad(double deg)
Definition: vpMath.h:129
static float modulo(const float &value, const float &modulo)
Gives the rest of value divided by modulo when the quotient can only be an integer.
Definition: vpMath.h:177
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:169
This class enables real time drawing of 2D or 3D graphics. An instance of the class open a window whi...
Definition: vpPlot.h:112
void initGraph(unsigned int graphNum, unsigned int curveNbr)
Definition: vpPlot.cpp:203
void setUnitY(unsigned int graphNum, const std::string &unity)
Definition: vpPlot.cpp:530
void setLegend(unsigned int graphNum, unsigned int curveNum, const std::string &legend)
Definition: vpPlot.cpp:552
void plot(unsigned int graphNum, unsigned int curveNum, double x, double y)
Definition: vpPlot.cpp:270
void setUnitX(unsigned int graphNum, const std::string &unitx)
Definition: vpPlot.cpp:520
void setTitle(unsigned int graphNum, const std::string &title)
Definition: vpPlot.cpp:510
Class that permits to convert the position of the aircraft into range and elevation angle measurement...
vpColVector state_to_measurement(const vpColVector &chi)
Convert the prior of the UKF into the measurement space.
std::function< vpColVector(const vpColVector &)> vpMeasurementFunction
Measurement function, which converts the prior points in the measurement space. The argument is a poi...
std::function< vpColVector(const vpColVector &, const double &)> vpProcessFunction
Process model function, which projects the sigma points forward in time. The first argument is a sigm...