Visual Servoing Platform  version 3.6.1 under development (2024-11-21)
ukf-nonlinear-complex-example.cpp

Example of a complex non-linear use-case of the Unscented Kalman Filter (UKF). The system we are interested in is a 4-wheel robot, moving at a low velocity. As such, it can be modeled using a bicycle model.

The state vector of the UKF is:

\[ \begin{array}{lcl} \textbf{x}[0] &=& x \\ \textbf{x}[1] &=& y \\ \textbf{x}[2] &=& \theta \end{array} \]

where $ \theta $ is the heading of the robot.

The measurement $ \textbf{z} $ corresponds to the distance and relative orientation of the robot with different landmarks. Be $ p_x^i $ and $ p_y^i $ the position of the $ i^{th} $ landmark along the x and y axis, the measurement vector can be written as:

\[ \begin{array}{lcl} \textbf{z}[2i] &=& \sqrt{(p_x^i - x)^2 + (p_y^i - y)^2} \\ \textbf{z}[2i+1] &=& \tan^{-1}{\frac{p_y^i - y}{p_x^i - x}} - \theta \end{array} \]

Some noise is added to the measurement vector to simulate measurements which are not perfect.

The mean of several angles must be computed in the Unscented Transform. The definition we chose to use is the following:

$ mean(\boldsymbol{\theta}) = atan2 (\frac{\sum_{i=1}^n \sin{\theta_i}}{n}, \frac{\sum_{i=1}^n \cos{\theta_i}}{n}) $

As the Unscented Transform uses a weighted mean, the actual implementation of the weighted mean of several angles is the following:

$ mean_{weighted}(\boldsymbol{\theta}) = atan2 (\sum_{i=1}^n w_m^i \sin{\theta_i}, \sum_{i=1}^n w_m^i \cos{\theta_i}) $

where $ w_m^i $ is the weight associated to the $ i^{th} $ measurements for the weighted mean.

Additionally, the addition and subtraction of angles must be carefully done, as the result must stay in the interval $[- \pi ; \pi ]$ or $[0 ; 2 \pi ]$ . We decided to use the interval $[- \pi ; \pi ]$ .

/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#include <iostream>
// UKF includes
#include <visp3/core/vpUKSigmaDrawerMerwe.h>
#include <visp3/core/vpUnscentedKalman.h>
// ViSP includes
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpGaussRand.h>
#ifdef VISP_HAVE_DISPLAY
#include <visp3/gui/vpPlot.h>
#endif
#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
namespace
{
double normalizeAngle(const double &angle)
{
double angleIn0to2pi = vpMath::modulo(angle, 2. * M_PI);
double angleInMinPiPi = angleIn0to2pi;
if (angleInMinPiPi > M_PI) {
// Substract 2 PI to be in interval [-Pi; Pi]
angleInMinPiPi -= 2. * M_PI;
}
return angleInMinPiPi;
}
vpColVector measurementMean(const std::vector<vpColVector> &measurements, const std::vector<double> &wm)
{
const unsigned int nbPoints = static_cast<unsigned int>(measurements.size());
const unsigned int sizeMeasurement = measurements[0].size();
const unsigned int nbLandmarks = sizeMeasurement / 2;
vpColVector mean(sizeMeasurement, 0.);
std::vector<double> sumCos(nbLandmarks, 0.);
std::vector<double> sumSin(nbLandmarks, 0.);
for (unsigned int i = 0; i < nbPoints; ++i) {
for (unsigned int j = 0; j < nbLandmarks; ++j) {
mean[2*j] += wm[i] * measurements[i][2*j];
sumCos[j] += wm[i] * std::cos(measurements[i][(2*j)+1]);
sumSin[j] += wm[i] * std::sin(measurements[i][(2*j)+1]);
}
}
for (unsigned int j = 0; j < nbLandmarks; ++j) {
mean[(2*j)+1] = std::atan2(sumSin[j], sumCos[j]);
}
return mean;
}
vpColVector measurementResidual(const vpColVector &meas, const vpColVector &toSubtract)
{
vpColVector res = meas - toSubtract;
unsigned int nbMeasures = res.size();
for (unsigned int i = 1; i < nbMeasures; i += 2) {
res[i] = normalizeAngle(res[i]);
}
return res;
}
vpColVector stateAdd(const vpColVector &state, const vpColVector &toAdd)
{
vpColVector add = state + toAdd;
add[2] = normalizeAngle(add[2]);
return add;
}
vpColVector stateMean(const std::vector<vpColVector> &states, const std::vector<double> &wm)
{
vpColVector mean(3, 0.);
unsigned int nbPoints = static_cast<unsigned int>(states.size());
double sumCos = 0.;
double sumSin = 0.;
for (unsigned int i = 0; i < nbPoints; ++i) {
mean[0] += wm[i] * states[i][0];
mean[1] += wm[i] * states[i][1];
sumCos += wm[i] * std::cos(states[i][2]);
sumSin += wm[i] * std::sin(states[i][2]);
}
mean[2] = std::atan2(sumSin, sumCos);
return mean;
}
vpColVector stateResidual(const vpColVector &state, const vpColVector &toSubtract)
{
vpColVector res = state - toSubtract;
res[2] = normalizeAngle(res[2]);
return res;
}
vpColVector fx(const vpColVector &x, const double & /*dt*/)
{
return x;
}
std::vector<vpColVector> generateTurnCommands(const double &v, const double &angleStart, const double &angleStop, const unsigned int &nbSteps)
{
std::vector<vpColVector> cmds;
double dTheta = vpMath::rad(angleStop - angleStart) / static_cast<double>(nbSteps - 1);
for (unsigned int i = 0; i < nbSteps; ++i) {
double theta = vpMath::rad(angleStart) + dTheta * static_cast<double>(i);
vpColVector cmd(2);
cmd[0] = v;
cmd[1] = theta;
cmds.push_back(cmd);
}
return cmds;
}
std::vector<vpColVector> generateCommands()
{
std::vector<vpColVector> cmds;
// Starting by an straight line acceleration
unsigned int nbSteps = 30;
double dv = (1.1 - 0.001) / static_cast<double>(nbSteps - 1);
for (unsigned int i = 0; i < nbSteps; ++i) {
vpColVector cmd(2);
cmd[0] = 0.001 + static_cast<double>(i) * dv;
cmd[1] = 0.;
cmds.push_back(cmd);
}
// Left turn
double lastLinearVelocity = cmds[cmds.size() -1][0];
std::vector<vpColVector> leftTurnCmds = generateTurnCommands(lastLinearVelocity, 0, 2, 15);
cmds.insert(cmds.end(), leftTurnCmds.begin(), leftTurnCmds.end());
for (unsigned int i = 0; i < 100; ++i) {
cmds.push_back(cmds[cmds.size() -1]);
}
// Right turn
lastLinearVelocity = cmds[cmds.size() -1][0];
std::vector<vpColVector> rightTurnCmds = generateTurnCommands(lastLinearVelocity, 2, -2, 15);
cmds.insert(cmds.end(), rightTurnCmds.begin(), rightTurnCmds.end());
for (unsigned int i = 0; i < 200; ++i) {
cmds.push_back(cmds[cmds.size() -1]);
}
// Left turn again
lastLinearVelocity = cmds[cmds.size() -1][0];
leftTurnCmds = generateTurnCommands(lastLinearVelocity, -2, 0, 15);
cmds.insert(cmds.end(), leftTurnCmds.begin(), leftTurnCmds.end());
for (unsigned int i = 0; i < 150; ++i) {
cmds.push_back(cmds[cmds.size() -1]);
}
lastLinearVelocity = cmds[cmds.size() -1][0];
leftTurnCmds = generateTurnCommands(lastLinearVelocity, 0, 1, 25);
cmds.insert(cmds.end(), leftTurnCmds.begin(), leftTurnCmds.end());
for (unsigned int i = 0; i < 150; ++i) {
cmds.push_back(cmds[cmds.size() -1]);
}
return cmds;
}
}
{
public:
vpBicycleModel(const double &w)
: m_w(w)
{ }
vpColVector computeMotion(const vpColVector &u, const vpColVector &x, const double &dt)
{
double heading = x[2];
double vel = u[0];
double steeringAngle = u[1];
double distance = vel * dt;
if (std::abs(steeringAngle) > 0.001) {
// The robot is turning
double beta = (distance / m_w) * std::tan(steeringAngle);
double radius = m_w / std::tan(steeringAngle);
double sinh = std::sin(heading);
double sinhb = std::sin(heading + beta);
double cosh = std::cos(heading);
double coshb = std::cos(heading + beta);
vpColVector motion(3);
motion[0] = -radius * sinh + radius * sinhb;
motion[1] = radius * cosh - radius * coshb;
motion[2] = beta;
return motion;
}
else {
// The robot is moving in straight line
vpColVector motion(3);
motion[0] = distance * std::cos(heading);
motion[1] = distance * std::sin(heading);
motion[2] = 0.;
return motion;
}
}
vpColVector move(const vpColVector &u, const vpColVector &x, const double &dt)
{
vpColVector motion = computeMotion(u, x, dt);
vpColVector newX = x + motion;
newX[2] = normalizeAngle(newX[2]);
return newX;
}
private:
double m_w; // The length of the wheelbase.
};
{
public:
vpLandmarkMeasurements(const double &x, const double &y, const double &range_std, const double &rel_angle_std)
: m_x(x)
, m_y(y)
, m_rngRange(range_std, 0., 4224)
, m_rngRelativeAngle(rel_angle_std, 0., 2112)
{ }
vpColVector state_to_measurement(const vpColVector &chi)
{
vpColVector meas(2);
double dx = m_x - chi[0];
double dy = m_y - chi[1];
meas[0] = std::sqrt(dx * dx + dy * dy);
meas[1] = normalizeAngle(std::atan2(dy, dx) - chi[2]);
return meas;
}
vpColVector measureGT(const vpColVector &pos)
{
double dx = m_x - pos[0];
double dy = m_y - pos[1];
double range = std::sqrt(dx * dx + dy * dy);
double orientation = normalizeAngle(std::atan2(dy, dx) - pos[2]);
vpColVector measurements(2);
measurements[0] = range;
measurements[1] = orientation;
return measurements;
}
vpColVector measureWithNoise(const vpColVector &pos)
{
vpColVector measurementsGT = measureGT(pos);
vpColVector measurementsNoisy = measurementsGT;
measurementsNoisy[0] += m_rngRange();
measurementsNoisy[1] += m_rngRelativeAngle();
measurementsNoisy[1] = normalizeAngle(measurementsNoisy[1]);
return measurementsNoisy;
}
private:
double m_x; // The position along the x-axis of the landmark
double m_y; // The position along the y-axis of the landmark
vpGaussRand m_rngRange; // Noise simulator for the range measurement
vpGaussRand m_rngRelativeAngle; // Noise simulator for the relative angle measurement
};
{
public:
vpLandmarksGrid(const std::vector<vpLandmarkMeasurements> &landmarks)
: m_landmarks(landmarks)
{ }
vpColVector state_to_measurement(const vpColVector &chi)
{
unsigned int nbLandmarks = static_cast<unsigned int>(m_landmarks.size());
vpColVector measurements(2*nbLandmarks);
for (unsigned int i = 0; i < nbLandmarks; ++i) {
vpColVector landmarkMeas = m_landmarks[i].state_to_measurement(chi);
measurements[2*i] = landmarkMeas[0];
measurements[(2*i) + 1] = landmarkMeas[1];
}
return measurements;
}
vpColVector measureGT(const vpColVector &pos)
{
unsigned int nbLandmarks = static_cast<unsigned int>(m_landmarks.size());
vpColVector measurements(2*nbLandmarks);
for (unsigned int i = 0; i < nbLandmarks; ++i) {
vpColVector landmarkMeas = m_landmarks[i].measureGT(pos);
measurements[2*i] = landmarkMeas[0];
measurements[(2*i) + 1] = landmarkMeas[1];
}
return measurements;
}
vpColVector measureWithNoise(const vpColVector &pos)
{
unsigned int nbLandmarks = static_cast<unsigned int>(m_landmarks.size());
vpColVector measurements(2*nbLandmarks);
for (unsigned int i = 0; i < nbLandmarks; ++i) {
vpColVector landmarkMeas = m_landmarks[i].measureWithNoise(pos);
measurements[2*i] = landmarkMeas[0];
measurements[(2*i) + 1] = landmarkMeas[1];
}
return measurements;
}
private:
std::vector<vpLandmarkMeasurements> m_landmarks;
};
int main(const int argc, const char *argv[])
{
bool opt_useDisplay = true;
for (int i = 1; i < argc; ++i) {
std::string arg(argv[i]);
if (arg == "-d") {
opt_useDisplay = false;
}
else if ((arg == "-h") || (arg == "--help")) {
std::cout << "SYNOPSIS" << std::endl;
std::cout << " " << argv[0] << " [-d][-h]" << std::endl;
std::cout << std::endl << std::endl;
std::cout << "DETAILS" << std::endl;
std::cout << " -d" << std::endl;
std::cout << " Deactivate display." << std::endl;
std::cout << std::endl;
std::cout << " -h, --help" << std::endl;
return 0;
}
}
const double dt = 0.1; // Period of 0.1s
const double step = 1.; // Number of update of the robot position between two UKF filtering
const double sigmaRange = 0.3; // Standard deviation of the range measurement: 0.3m
const double sigmaBearing = vpMath::rad(0.5); // Standard deviation of the bearing angle: 0.5deg
const double wheelbase = 0.5; // Wheelbase of 0.5m
const std::vector<vpLandmarkMeasurements> landmarks = { vpLandmarkMeasurements(5, 10, sigmaRange, sigmaBearing)
, vpLandmarkMeasurements(10, 5, sigmaRange, sigmaBearing)
, vpLandmarkMeasurements(15, 15, sigmaRange, sigmaBearing)
, vpLandmarkMeasurements(20, 5, sigmaRange, sigmaBearing)
, vpLandmarkMeasurements(0, 30, sigmaRange, sigmaBearing)
, vpLandmarkMeasurements(50, 30, sigmaRange, sigmaBearing)
, vpLandmarkMeasurements(40, 10, sigmaRange, sigmaBearing) }; // Vector of landmarks constituting the grid
const unsigned int nbLandmarks = static_cast<unsigned int>(landmarks.size()); // Number of landmarks constituting the grid
std::vector<vpColVector> cmds = generateCommands();
const unsigned int nbCmds = static_cast<unsigned int>(cmds.size());
// Initialize the attributes of the UKF
std::shared_ptr<vpUKSigmaDrawerAbstract> drawer = std::make_shared<vpUKSigmaDrawerMerwe>(3, 0.1, 2., 0, stateResidual, stateAdd);
vpMatrix R1landmark(2, 2, 0.); // The covariance of the noise introduced by the measurement with 1 landmark
R1landmark[0][0] = sigmaRange*sigmaRange;
R1landmark[1][1] = sigmaBearing*sigmaBearing;
vpMatrix R(2*nbLandmarks, 2 * nbLandmarks);
for (unsigned int i = 0; i < nbLandmarks; ++i) {
R.insert(R1landmark, 2*i, 2*i);
}
const double processVariance = 0.0001;
vpMatrix Q; // The covariance of the process
Q.eye(3);
Q = Q * processVariance;
vpMatrix P0(3, 3); // The initial guess of the process covariance
P0.eye(3);
P0[0][0] = 0.1;
P0[1][1] = 0.1;
P0[2][2] = 0.05;
vpColVector X0(3);
X0[0] = 2.; // x = 2m
X0[1] = 6.; // y = 6m
X0[2] = 0.3; // robot orientation = 0.3 rad
vpLandmarksGrid grid(landmarks);
vpBicycleModel robot(wheelbase);
using std::placeholders::_1;
using std::placeholders::_2;
using std::placeholders::_3;
// Initialize the UKF
vpUnscentedKalman ukf(Q, R, drawer, f, h);
ukf.init(X0, P0);
ukf.setCommandStateFunction(bx);
ukf.setMeasurementMeanFunction(measurementMean);
ukf.setMeasurementResidualFunction(measurementResidual);
ukf.setStateAddFunction(stateAdd);
ukf.setStateMeanFunction(stateMean);
ukf.setStateResidualFunction(stateResidual);
#ifdef VISP_HAVE_DISPLAY
vpPlot *plot = nullptr;
if (opt_useDisplay) {
// Initialize the plot
plot = new vpPlot(1);
plot->initGraph(0, 2);
plot->setTitle(0, "Position of the robot");
plot->setUnitX(0, "Position along x(m)");
plot->setUnitY(0, "Position along y (m)");
plot->setLegend(0, 0, "GT");
plot->setLegend(0, 1, "Filtered");
}
#endif
// Initialize the simulation
vpColVector robot_pos = X0;
for (unsigned int i = 0; i < nbCmds; ++i) {
robot_pos = robot.move(cmds[i], robot_pos, dt / step);
if (i % static_cast<int>(step) == 0) {
// Perform the measurement
vpColVector z = grid.measureWithNoise(robot_pos);
// Use the UKF to filter the measurement
ukf.filter(z, dt, cmds[i]);
#ifdef VISP_HAVE_DISPLAY
if (opt_useDisplay) {
// Plot the filtered state
vpColVector Xest = ukf.getXest();
plot->plot(0, 1, Xest[0], Xest[1]);
}
#endif
}
#ifdef VISP_HAVE_DISPLAY
if (opt_useDisplay) {
// Plot the ground truth
plot->plot(0, 0, robot_pos[0], robot_pos[1]);
}
#endif
}
if (opt_useDisplay) {
std::cout << "Press Enter to quit..." << std::endl;
std::cin.get();
}
#ifdef VISP_HAVE_DISPLAY
if (opt_useDisplay) {
delete plot;
}
#endif
vpColVector finalError = grid.state_to_measurement(ukf.getXest()) - grid.measureGT(robot_pos);
const double maxError = 0.3;
if (finalError.frobeniusNorm() > maxError) {
std::cerr << "Error: max tolerated error = " << maxError << ", final error = " << finalError.frobeniusNorm() << std::endl;
return -1;
}
return 0;
}
#else
int main()
{
std::cout << "This example is only available if you compile ViSP in C++11 standard or higher." << std::endl;
return 0;
}
#endif
unsigned int size() const
Return the number of elements of the 2D array.
Definition: vpArray2D.h:349
Class that approximates a 4-wheel robot using a bicycle model.
vpColVector computeMotion(const vpColVector &u, const vpColVector &x, const double &dt)
Models the effect of the command on the state model.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
double frobeniusNorm() const
Class for generating random number with normal probability density.
Definition: vpGaussRand.h:117
Class that permits to convert the position + heading of the 4-wheel robot into measurements from a la...
Class that represent a grid of landmarks that measure the distance and relative orientation of the 4-...
vpColVector state_to_measurement(const vpColVector &chi)
Convert the prior of the UKF into the measurement space.
static double rad(double deg)
Definition: vpMath.h:129
static float modulo(const float &value, const float &modulo)
Gives the rest of value divided by modulo when the quotient can only be an integer.
Definition: vpMath.h:177
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:169
This class enables real time drawing of 2D or 3D graphics. An instance of the class open a window whi...
Definition: vpPlot.h:112
void initGraph(unsigned int graphNum, unsigned int curveNbr)
Definition: vpPlot.cpp:203
void setUnitY(unsigned int graphNum, const std::string &unity)
Definition: vpPlot.cpp:530
void setLegend(unsigned int graphNum, unsigned int curveNum, const std::string &legend)
Definition: vpPlot.cpp:552
void plot(unsigned int graphNum, unsigned int curveNum, double x, double y)
Definition: vpPlot.cpp:270
void setUnitX(unsigned int graphNum, const std::string &unitx)
Definition: vpPlot.cpp:520
void setTitle(unsigned int graphNum, const std::string &title)
Definition: vpPlot.cpp:510
std::function< vpColVector(const vpColVector &, const vpColVector &, const double &)> vpCommandStateFunction
Command model function, which projects effect of the command on the state, when the effect of the com...
std::function< vpColVector(const vpColVector &)> vpMeasurementFunction
Measurement function, which converts the prior points in the measurement space. The argument is a poi...
std::function< vpColVector(const vpColVector &, const double &)> vpProcessFunction
Process model function, which projects the sigma points forward in time. The first argument is a sigm...