Visual Servoing Platform  version 3.6.1 under development (2024-12-17)
testImageFilter.cpp

Test some functions from vpImageFilter class.

/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Test some functions from vpImageFilter class.
*/
#include <iostream>
#include <visp3/core/vpImageConvert.h>
#include <visp3/core/vpImageFilter.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpRGBa.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/io/vpParseArgv.h>
// List of allowed command line options
#define GETOPTARGS "cdi:p:h"
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
namespace
{
/*
Print the program options.
\param name : Program name.
\param badparam : Bad parameter name.
\param ipath: Input image path.
*/
void usage(const char *name, const char *badparam, std::string ipath)
{
fprintf(stdout, "\n\
Test vpImageFilter class.\n\
\n\
SYNOPSIS\n\
%s [-i <input image path>] [-p <personal image path>]\n\
[-h]\n \
",
name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-i <input image path> %s\n\
Set image input path.\n\
From this path read \"Klimt/Klimt.pgm,\n\
.ppm, .jpeg and .png images.\n\
Setting the VISP_INPUT_IMAGE_PATH environment\n\
variable produces the same behaviour than using\n\
this option.\n\
\n\
-p <personal image path> \n\
Path to an image used to test image reading function.\n\
Example: -p /my_path_to/image.png\n\
\n\
-h\n\
Print the help.\n\n",
ipath.c_str());
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, std::string &ipath, std::string &ppath)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'i':
ipath = optarg_;
break;
case 'p':
ppath = optarg_;
break;
case 'h':
usage(argv[0], nullptr, ipath);
return false;
break;
case 'c':
case 'd':
break;
default:
usage(argv[0], optarg_, ipath);
return false;
break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], nullptr, ipath);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
#if defined(VISP_HAVE_OPENCV) && defined(HAVE_OPENCV_IMGPROC)
bool check_results(const cv::Mat &mat, const vpImage<double> &I, unsigned int half_size_y, unsigned int half_size_x)
{
for (unsigned int i = half_size_y; i < I.getHeight() - half_size_y; i++) {
for (unsigned int j = half_size_x; j < I.getWidth() - half_size_x; j++) {
if (!vpMath::equal(mat.at<double>(static_cast<int>(i), static_cast<int>(j)), I[i][j],
std::numeric_limits<double>::epsilon())) {
return false;
}
}
}
return true;
}
bool check_results(const cv::Mat &mat, const vpImage<double> &I, unsigned int margin, double threshold)
{
for (unsigned int i = margin; i < I.getHeight() - margin; i++) {
for (unsigned int j = margin; j < I.getWidth() - margin; j++) {
if (!vpMath::equal(mat.at<unsigned char>(static_cast<int>(i), static_cast<int>(j)), I[i][j], threshold)) {
return false;
}
}
}
return true;
}
bool check_results(const cv::Mat &mat, const vpImage<vpRGBa> &I, unsigned int margin, double threshold)
{
for (unsigned int i = margin; i < I.getHeight() - margin; i++) {
for (unsigned int j = margin; j < I.getWidth() - margin; j++) {
if (!vpMath::equal(static_cast<double>(mat.at<cv::Vec3b>(static_cast<int>(i), static_cast<int>(j))[2]), I[i][j].R,
threshold)) {
return false;
}
if (!vpMath::equal(static_cast<double>(mat.at<cv::Vec3b>(static_cast<int>(i), static_cast<int>(j))[1]), I[i][j].G,
threshold)) {
return false;
}
if (!vpMath::equal(static_cast<double>(mat.at<cv::Vec3b>(static_cast<int>(i), static_cast<int>(j))[0]), I[i][j].B,
threshold)) {
return false;
}
}
}
return true;
}
#endif
} // namespace
int main(int argc, const char *argv[])
{
try {
std::string env_ipath;
std::string opt_ipath;
std::string opt_ppath;
std::string ipath;
std::string filename;
// Get the visp-images-data package path or VISP_INPUT_IMAGE_PATH
// environment variable value
// Set the default input path
if (!env_ipath.empty())
ipath = env_ipath;
// Read the command line options
if (getOptions(argc, argv, opt_ipath, opt_ppath) == false) {
exit(EXIT_FAILURE);
}
// Get the option values
if (!opt_ipath.empty())
ipath = opt_ipath;
// Compare ipath and env_ipath. If they differ, we take into account
// the input path coming from the command line option
if (!opt_ipath.empty() && !env_ipath.empty()) {
if (ipath != env_ipath) {
std::cout << std::endl << "WARNING: " << std::endl;
std::cout << " Since -i <visp image path=" << ipath << "> "
<< " is different from VISP_IMAGE_PATH=" << env_ipath << std::endl
<< " we skip the environment variable." << std::endl;
}
}
//
// Here starts really the test
//
vpMatrix kernel_1(2, 2);
for (unsigned int i = 0, cpt = 1; i < kernel_1.getRows(); i++) {
for (unsigned int j = 0; j < kernel_1.getCols(); j++, cpt++) {
kernel_1[i][j] = cpt;
}
}
std::cout << "kernel_1:\n" << kernel_1 << std::endl;
vpMatrix kernel_2(3, 3);
for (unsigned int i = 0, cpt = 1; i < kernel_2.getRows(); i++) {
for (unsigned int j = 0; j < kernel_2.getCols(); j++, cpt++) {
kernel_2[i][j] = cpt;
}
}
std::cout << "kernel_2:\n" << kernel_2 << std::endl;
vpMatrix kernel_3(2, 3);
for (unsigned int i = 0, cpt = 1; i < kernel_3.getRows(); i++) {
for (unsigned int j = 0; j < kernel_3.getCols(); j++, cpt++) {
kernel_3[i][j] = cpt;
}
}
std::cout << "kernel_3:\n" << kernel_3 << std::endl;
{
// Test on small images first
for (unsigned int i = 0; i < I.getSize(); i++) {
I.bitmap[i] = (unsigned char)i;
}
std::cout << "I:\n" << I << std::endl;
// Test correlation
vpImage<double> I_correlation_1, I_correlation_2, I_correlation_3;
vpImageFilter::filter(I, I_correlation_1, kernel_1);
vpImageFilter::filter(I, I_correlation_2, kernel_2);
vpImageFilter::filter(I, I_correlation_3, kernel_3);
std::cout << "\nI_correlation_1:\n" << I_correlation_1 << std::endl;
std::cout << "I_correlation_2:\n" << I_correlation_2 << std::endl;
std::cout << "I_correlation_3:\n" << I_correlation_3 << std::endl;
#if defined(VISP_HAVE_OPENCV) && defined(HAVE_OPENCV_IMGPROC)
cv::Mat matImg;
cv::Mat mat_kernel_1(2, 2, CV_64F);
for (int i = 0, cpt = 1; i < mat_kernel_1.rows; i++) {
for (int j = 0; j < mat_kernel_1.cols; j++, cpt++) {
mat_kernel_1.at<double>(i, j) = cpt;
}
}
cv::Mat mat_kernel_2(3, 3, CV_64F);
for (int i = 0, cpt = 1; i < mat_kernel_2.rows; i++) {
for (int j = 0; j < mat_kernel_2.cols; j++, cpt++) {
mat_kernel_2.at<double>(i, j) = cpt;
}
}
cv::Mat mat_kernel_3(2, 3, CV_64F);
for (int i = 0, cpt = 1; i < mat_kernel_3.rows; i++) {
for (int j = 0; j < mat_kernel_3.cols; j++, cpt++) {
mat_kernel_3.at<double>(i, j) = cpt;
}
}
cv::Mat matImg_correlation_1, matImg_correlation_2, matImg_correlation_3;
cv::filter2D(matImg, matImg_correlation_1, CV_64F, mat_kernel_1);
cv::filter2D(matImg, matImg_correlation_2, CV_64F, mat_kernel_2);
cv::filter2D(matImg, matImg_correlation_3, CV_64F, mat_kernel_3);
std::cout << "\nTest correlation on small image:" << std::endl;
std::cout << "(I_correlation_1 == matImg_correlation_1)? "
<< check_results(matImg_correlation_1, I_correlation_1, kernel_1.getRows() / 2, kernel_1.getCols() / 2)
<< std::endl;
std::cout << "(I_correlation_2 == matImg_correlation_2)? "
<< check_results(matImg_correlation_2, I_correlation_2, kernel_2.getRows() / 2, kernel_2.getCols() / 2)
<< std::endl;
std::cout << "(I_correlation_3 == matImg_correlation_3)? "
<< check_results(matImg_correlation_3, I_correlation_3, kernel_3.getRows() / 2, kernel_3.getCols() / 2)
<< std::endl;
#endif
// Test convolution
vpImage<double> I_convolution_1, I_convolution_2, I_convolution_3;
vpImageFilter::filter(I, I_convolution_1, kernel_1, true);
vpImageFilter::filter(I, I_convolution_2, kernel_2, true);
vpImageFilter::filter(I, I_convolution_3, kernel_3, true);
std::cout << "\nI_convolution_1:\n" << I_convolution_1 << std::endl;
std::cout << "I_convolution_2:\n" << I_convolution_2 << std::endl;
std::cout << "I_convolution_3:\n" << I_convolution_3 << std::endl;
#if defined(VISP_HAVE_OPENCV) && defined(HAVE_OPENCV_IMGPROC)
cv::Mat mat_kernel_1_flip, mat_kernel_2_flip, mat_kernel_3_flip;
cv::flip(mat_kernel_1, mat_kernel_1_flip, -1);
cv::flip(mat_kernel_2, mat_kernel_2_flip, -1);
cv::flip(mat_kernel_3, mat_kernel_3_flip, -1);
cv::Mat matImg_convolution_1, matImg_convolution_2, matImg_convolution_3;
cv::Point anchor1(mat_kernel_1_flip.cols - mat_kernel_1_flip.cols / 2 - 1,
mat_kernel_1_flip.rows - mat_kernel_1_flip.rows / 2 - 1);
cv::filter2D(matImg, matImg_convolution_1, CV_64F, mat_kernel_1_flip, anchor1);
cv::Point anchor2(mat_kernel_2_flip.cols - mat_kernel_2_flip.cols / 2 - 1,
mat_kernel_2_flip.rows - mat_kernel_2_flip.rows / 2 - 1);
cv::filter2D(matImg, matImg_convolution_2, CV_64F, mat_kernel_2_flip, anchor2);
cv::Point anchor3(mat_kernel_3_flip.cols - mat_kernel_3_flip.cols / 2 - 1,
mat_kernel_3_flip.rows - mat_kernel_3_flip.rows / 2 - 1);
cv::filter2D(matImg, matImg_convolution_3, CV_64F, mat_kernel_3_flip, anchor3);
std::cout << "\nTest convolution on small image:" << std::endl;
std::cout << "(I_convolution_1 == matImg_convolution_1)? "
<< check_results(matImg_convolution_1, I_convolution_1, kernel_1.getRows() / 2, kernel_1.getCols() / 2)
<< std::endl;
std::cout << "(I_convolution_2 == matImg_convolution_2)? "
<< check_results(matImg_convolution_2, I_convolution_2, kernel_2.getRows() / 2, kernel_2.getCols() / 2)
<< std::endl;
std::cout << "(I_convolution_3 == matImg_convolution_3)? "
<< check_results(matImg_convolution_3, I_convolution_3, kernel_3.getRows() / 2, kernel_3.getCols() / 2)
<< std::endl;
#endif
if (opt_ppath.empty()) {
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.pgm");
vpImageIo::read(I, filename);
}
else {
filename = opt_ppath;
vpImageIo::read(I, filename);
printf("Image \"%s\" read successfully\n", filename.c_str());
}
// Test correlation
double t = vpTime::measureTimeMs();
vpImageFilter::filter(I, I_correlation_1, kernel_1);
vpImageFilter::filter(I, I_correlation_2, kernel_2);
vpImageFilter::filter(I, I_correlation_3, kernel_3);
std::cout << "\nTime to do 3 correlation filtering: " << t << " ms ; Mean: " << t / 3.0 << " ms" << std::endl;
#if defined(VISP_HAVE_OPENCV) && defined(HAVE_OPENCV_IMGPROC)
cv::filter2D(matImg, matImg_correlation_1, CV_64F, mat_kernel_1);
cv::filter2D(matImg, matImg_correlation_2, CV_64F, mat_kernel_2);
cv::filter2D(matImg, matImg_correlation_3, CV_64F, mat_kernel_3);
std::cout << "Time to do 3 cv::filter2D: " << t << " ms ; Mean: " << t / 3.0 << " ms" << std::endl;
std::cout << "\nTest correlation on Klimt image:" << std::endl;
bool test = check_results(matImg_correlation_1, I_correlation_1, kernel_1.getRows() / 2, kernel_1.getCols() / 2);
std::cout << "(I_correlation_1 == matImg_correlation_1)? " << test << std::endl;
if (!test) {
std::cerr << "Failed test1 correlation with vpImageFilter::filter()!" << std::endl;
return EXIT_FAILURE;
}
test = check_results(matImg_correlation_2, I_correlation_2, kernel_2.getRows() / 2, kernel_2.getCols() / 2);
std::cout << "(I_correlation_2 == matImg_correlation_2)? " << test << std::endl;
if (!test) {
std::cerr << "Failed test2 correlation with vpImageFilter::filter()!" << std::endl;
return EXIT_FAILURE;
}
test = check_results(matImg_correlation_3, I_correlation_3, kernel_3.getRows() / 2, kernel_3.getCols() / 2);
std::cout << "(I_correlation_3 == matImg_correlation_3)? " << test << std::endl;
if (!test) {
std::cerr << "Failed test3 correlation with vpImageFilter::filter()!" << std::endl;
return EXIT_FAILURE;
}
#endif
// Test convolution
vpImageFilter::filter(I, I_convolution_1, kernel_1, true);
vpImageFilter::filter(I, I_convolution_2, kernel_2, true);
vpImageFilter::filter(I, I_convolution_3, kernel_3, true);
std::cout << "\nTime to do 3 convolution filtering: " << t << " ms ; Mean: " << t / 3.0 << " ms" << std::endl;
#if defined(VISP_HAVE_OPENCV) && defined(HAVE_OPENCV_IMGPROC)
cv::filter2D(matImg, matImg_convolution_1, CV_64F, mat_kernel_1_flip, anchor1);
cv::filter2D(matImg, matImg_convolution_2, CV_64F, mat_kernel_2_flip, anchor2);
cv::filter2D(matImg, matImg_convolution_3, CV_64F, mat_kernel_3_flip, anchor3);
std::cout << "Time to do 3 cv::filter2D: " << t << " ms ; Mean: " << t / 3.0 << " ms" << std::endl;
std::cout << "\nTest convolution on Klimt image:" << std::endl;
test = check_results(matImg_convolution_1, I_convolution_1, kernel_1.getRows() / 2, kernel_1.getCols() / 2);
std::cout << "(I_convolution_1 == matImg_convolution_1)? " << test << std::endl;
if (!test) {
std::cerr << "Failed test1 convolution with vpImageFilter::filter()!" << std::endl;
return EXIT_FAILURE;
}
test = check_results(matImg_convolution_2, I_convolution_2, kernel_2.getRows() / 2, kernel_2.getCols() / 2);
std::cout << "(I_convolution_2 == matImg_convolution_2)? " << test << std::endl;
if (!test) {
std::cerr << "Failed test2 convolution with vpImageFilter::filter()!" << std::endl;
return EXIT_FAILURE;
}
test = check_results(matImg_convolution_3, I_convolution_3, kernel_3.getRows() / 2, kernel_3.getCols() / 2);
std::cout << "(I_convolution_3 == matImg_convolution_3)? " << test << std::endl;
if (!test) {
std::cerr << "Failed test3 convolution with vpImageFilter::filter()!" << std::endl;
return EXIT_FAILURE;
}
#endif
// Test Sobel
vpMatrix kernel_sobel_x_flip(5, 5);
vpImageFilter::getSobelKernelX(kernel_sobel_x_flip.data, 2);
vpMatrix kernel_sobel_x(5, 5);
for (unsigned int i = 0; i < kernel_sobel_x.getRows(); i++) {
for (unsigned int j = 0; j < kernel_sobel_x.getCols(); j++) {
kernel_sobel_x[i][j] = kernel_sobel_x_flip[i][kernel_sobel_x.getCols() - 1 - j];
}
}
vpImage<double> I_sobel_x;
vpImageFilter::filter(I, I_sobel_x, kernel_sobel_x, true);
std::cout << "\nTime to do Sobel: " << t << " ms" << std::endl;
#if defined(VISP_HAVE_OPENCV) && defined(HAVE_OPENCV_IMGPROC)
cv::Mat matImg_sobel_x;
cv::Sobel(matImg, matImg_sobel_x, CV_64F, 1, 0, 5);
std::cout << "Time to do cv::Sobel: " << t << " ms" << std::endl;
std::cout << "\nTest Sobel on Klimt image:" << std::endl;
std::cout << "(I_sobel_x == matImg_sobel_x)? "
<< check_results(matImg_sobel_x, I_sobel_x, kernel_sobel_x.getRows() / 2, kernel_sobel_x.getCols() / 2)
<< std::endl;
#endif
vpImage<double> I_double, Iu, Iv;
vpImageFilter::filter(I_double, Iu, Iv, kernel_sobel_x, true);
std::cout << "\nTime to do Sobel Iu and Iv: " << t << " ms" << std::endl;
#if defined(VISP_HAVE_OPENCV) && defined(HAVE_OPENCV_IMGPROC)
cv::Mat matImg_sobel_y;
cv::Sobel(matImg, matImg_sobel_y, CV_64F, 0, 1, 5);
std::cout << "(Iu == matImg_sobel_x)? "
<< check_results(matImg_sobel_x, Iu, kernel_sobel_x.getRows() / 2, kernel_sobel_x.getCols() / 2)
<< std::endl;
std::cout << "(Iv == matImg_sobel_y)? "
<< check_results(matImg_sobel_y, Iv, kernel_sobel_x.getRows() / 2, kernel_sobel_x.getCols() / 2)
<< std::endl;
#endif
// Test Sobel separable filters
vpImage<double> I_sep_filtered;
vpColVector kernel_sep_x(5);
kernel_sep_x[0] = 1.0;
kernel_sep_x[1] = 2.0;
kernel_sep_x[2] = 0.0;
kernel_sep_x[3] = -2.0;
kernel_sep_x[4] = -1.0;
vpColVector kernel_sep_y(5);
kernel_sep_y[0] = 1.0;
kernel_sep_y[1] = 4.0;
kernel_sep_y[2] = 6.0;
kernel_sep_y[3] = 4.0;
kernel_sep_y[4] = 1.0;
vpImageFilter::sepFilter(I, I_sep_filtered, kernel_sep_x, kernel_sep_y);
std::cout << "\nTime to do sepFilter: " << t << " ms" << std::endl;
#if defined(VISP_HAVE_OPENCV) && defined(HAVE_OPENCV_IMGPROC)
test = check_results(matImg_sobel_x, Iu, I_sep_filtered.getRows() / 2, kernel_sobel_x.getCols() / 2);
std::cout << "(I_sep_filtered == matImg_sobel_x)? " << test << std::endl;
if (!test) {
std::cerr << "Failed separable filter!" << std::endl;
return EXIT_FAILURE;
}
// Test median filter on gray-scale image
std::cout << "\nTest median on grayscale image:" << std::endl;
vpImage<unsigned char> I_median(3, 3);
for (unsigned int r = 0; r < 3; r++) {
for (unsigned int c = 0; c < 3; c++) {
I_median[r][c] = r * 3 + c;
}
}
double median = vpImageFilter::median(I_median);
double expectedMedian = 4.;
test = (median == expectedMedian);
std::cout << "(median (=" << median << ") == expectedMedian(" << expectedMedian << "))? " << test << std::endl;
if (!test) {
std::cerr << "Failed median filter on gray-scale image!" << std::endl;
return EXIT_FAILURE;
}
std::cout << "\nTest median on vpRGBa image:" << std::endl;
vpImage<vpRGBa> I_median_rgba(3, 3);
for (unsigned int r = 0; r < 3; r++) {
for (unsigned int c = 0; c < 3; c++) {
I_median_rgba[r][c].R = r * 3 + c;
I_median_rgba[r][c].G = 2 * (r * 3 + c);
I_median_rgba[r][c].B = 3 * (r * 3 + c);
}
}
std::vector<float> median_rgba = vpImageFilter::median(I_median_rgba);
std::vector<float> expected_median_rgba = { 4.f, 8.f, 12.f };
for (unsigned int i = 0; i < 3; i++) {
bool test_local = (median_rgba[i] == expected_median_rgba[i]);
test &= test_local;
std::cout << "(median_rgba[" << i << "] (=" << median_rgba[i] << ") == expected_median_rgba[" << i << "] ( " << expected_median_rgba[i] << "))? " << test_local << std::endl;
}
if (!test) {
std::cerr << "Failed median filter on vpRGBa image!" << std::endl;
return EXIT_FAILURE;
}
#endif
}
{
// Test Gaussian blur on grayscale image
std::cout << "\nTest Gaussian Blur on Klimt grayscale image:" << std::endl;
// Test on real image
if (opt_ppath.empty()) {
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.pgm");
vpImageIo::read(I, filename);
}
else {
filename = opt_ppath;
vpImageIo::read(I, filename);
printf("Image \"%s\" read successfully\n", filename.c_str());
}
unsigned int gaussian_filter_size = 7;
double sigma = 3;
double t = vpTime::measureTimeMs();
vpImageFilter::gaussianBlur(I, I_blur, gaussian_filter_size, sigma);
std::cout << "Time to do ViSP Gaussian Blur on grayscale images: " << t << " ms" << std::endl;
#if defined(VISP_HAVE_OPENCV) && defined(HAVE_OPENCV_IMGPROC)
cv::Mat matImg, matImg_blur;
cv::GaussianBlur(matImg, matImg_blur, cv::Size(gaussian_filter_size, gaussian_filter_size), sigma, 0);
std::cout << "Time to do OpenCV Gaussian Blur on grayscale images: " << t << " ms" << std::endl;
double threshold = 3.;
unsigned int margin = 3;
bool test = check_results(matImg_blur, I_blur, margin, threshold);
std::cout << "(I_blur == matImg_blur)? " << test << std::endl;
if (!test) {
std::cerr << "Failed Gaussian blur filter on grayscale image!" << std::endl;
return EXIT_FAILURE;
}
#endif
}
{
// Test Gaussian blur on color image
std::cout << "\nTest Gaussian Blur on Klimt color image:" << std::endl;
vpImage<vpRGBa> I_rgb, I_rgb_blur;
// Test on real image
if (opt_ppath.empty()) {
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.ppm");
vpImageIo::read(I_rgb, filename);
}
else {
filename = opt_ppath;
vpImageIo::read(I_rgb, filename);
printf("Image \"%s\" read successfully\n", filename.c_str());
}
unsigned int gaussian_filter_size = 7;
double sigma = 3;
double t = vpTime::measureTimeMs();
vpImageFilter::gaussianBlur(I_rgb, I_rgb_blur, gaussian_filter_size, sigma);
std::cout << "Time to do ViSP Gaussian Blur on color images: " << t << " ms" << std::endl;
#if defined(VISP_HAVE_OPENCV) && defined(HAVE_OPENCV_IMGPROC)
cv::Mat matImg_rgb, matImg_rgb_blur;
vpImageConvert::convert(I_rgb, matImg_rgb);
cv::GaussianBlur(matImg_rgb, matImg_rgb_blur, cv::Size(gaussian_filter_size, gaussian_filter_size), sigma, 0);
std::cout << "Time to do OpenCV Gaussian Blur on color images: " << t << " ms" << std::endl;
double threshold = 3.;
unsigned int margin = 3;
bool test = check_results(matImg_rgb_blur, I_rgb_blur, margin, threshold);
std::cout << "(I_rgb_blur == matImg_rgb_blur)? " << test << std::endl;
if (!test) {
std::cerr << "Failed Gaussian blur filter on color image!" << std::endl;
return EXIT_FAILURE;
}
#endif
}
}
catch (const vpException &e) {
std::cerr << "Catch an exception: " << e.what() << std::endl;
return EXIT_FAILURE;
}
std::cout << "\ntestImageFilter is ok." << std::endl;
return EXIT_SUCCESS;
}
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
error that can be emitted by ViSP classes.
Definition: vpException.h:60
const char * what() const
Definition: vpException.cpp:71
static void convert(const vpImage< unsigned char > &src, vpImage< vpRGBa > &dest)
static FilterType getSobelKernelX(FilterType *filter, unsigned int size)
static void gaussianBlur(const vpImage< ImageType > &I, vpImage< FilterType > &GI, unsigned int size=7, FilterType sigma=0., bool normalize=true, const vpImage< bool > *p_mask=nullptr)
static void filter(const vpImage< ImageType > &I, vpImage< FilterType > &If, const vpArray2D< FilterType > &M, bool convolve=false, const vpImage< bool > *p_mask=nullptr)
static void sepFilter(const vpImage< unsigned char > &I, vpImage< double > &If, const vpColVector &kernelH, const vpColVector &kernelV)
static float median(const cv::Mat &cv_I)
Calculates the median value of a single channel. The algorithm is based on based on https://github....
static void read(vpImage< unsigned char > &I, const std::string &filename, int backend=IO_DEFAULT_BACKEND)
Definition: vpImageIo.cpp:147
unsigned int getWidth() const
Definition: vpImage.h:242
unsigned int getSize() const
Definition: vpImage.h:221
Type * bitmap
points toward the bitmap
Definition: vpImage.h:135
unsigned int getHeight() const
Definition: vpImage.h:181
unsigned int getRows() const
Definition: vpImage.h:212
static std::string getViSPImagesDataPath()
Definition: vpIoTools.cpp:1053
static std::string createFilePath(const std::string &parent, const std::string &child)
Definition: vpIoTools.cpp:1427
static bool equal(double x, double y, double threshold=0.001)
Definition: vpMath.h:459
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:169
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:70
VISP_EXPORT double measureTimeMs()