Visual Servoing Platform  version 3.6.1 under development (2024-04-20)
servoSimuPoint3DCamVelocity.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See https://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a 3D visual servoing on a 3D point.
33  *
34 *****************************************************************************/
35 
46 #include <stdio.h>
47 #include <stdlib.h>
48 
49 #include <visp3/core/vpHomogeneousMatrix.h>
50 #include <visp3/core/vpMath.h>
51 #include <visp3/core/vpPoint.h>
52 #include <visp3/io/vpParseArgv.h>
53 #include <visp3/robot/vpSimulatorCamera.h>
54 #include <visp3/visual_features/vpFeaturePoint3D.h>
55 #include <visp3/vs/vpServo.h>
56 
57 // List of allowed command line options
58 #define GETOPTARGS "h"
59 
60 void usage(const char *name, const char *badparam);
61 bool getOptions(int argc, const char **argv);
62 
71 void usage(const char *name, const char *badparam)
72 {
73  fprintf(stdout, "\n\
74 Simulation of a 3D visual servoing:\n\
75 - servo a 3D point,\n\
76 - eye-in-hand control law,\n\
77 - velocity computed in the camera frame,\n\
78 - without display.\n\
79  \n\
80 SYNOPSIS\n\
81  %s [-h]\n",
82  name);
83 
84  fprintf(stdout, "\n\
85 OPTIONS: Default\n\
86  \n\
87  -h\n\
88  Print the help.\n");
89 
90  if (badparam)
91  fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
92 }
93 
103 bool getOptions(int argc, const char **argv)
104 {
105  const char *optarg_;
106  int c;
107  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
108 
109  switch (c) {
110  case 'h':
111  usage(argv[0], nullptr);
112  return false;
113 
114  default:
115  usage(argv[0], optarg_);
116  return false;
117  }
118  }
119 
120  if ((c == 1) || (c == -1)) {
121  // standalone param or error
122  usage(argv[0], nullptr);
123  std::cerr << "ERROR: " << std::endl;
124  std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
125  return false;
126  }
127 
128  return true;
129 }
130 
131 int main(int argc, const char **argv)
132 {
133 #if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
134  try {
135  // Read the command line options
136  if (getOptions(argc, argv) == false) {
137  return EXIT_FAILURE;
138  }
139 
140  vpServo task;
141  vpSimulatorCamera robot;
142 
143  std::cout << std::endl;
144  std::cout << "-------------------------------------------------------" << std::endl;
145  std::cout << " Test program for vpServo " << std::endl;
146  std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl;
147  std::cout << " Simulation " << std::endl;
148  std::cout << " task : servo a 3D point " << std::endl;
149  std::cout << "-------------------------------------------------------" << std::endl;
150  std::cout << std::endl;
151 
152  // sets the initial camera location
154  cMo[0][3] = 0.1;
155  cMo[1][3] = 0.2;
156  cMo[2][3] = 2;
157  // Compute the position of the object in the world frame
158  vpHomogeneousMatrix wMc, wMo;
159  robot.getPosition(wMc);
160  wMo = wMc * cMo;
161 
162  // sets the point coordinates in the world frame
163  vpPoint point(0, 0, 0);
164 
165  // computes the point coordinates in the camera frame
166  point.track(cMo);
167 
168  std::cout << "Point coordinates in the camera frame: " << point.cP.t();
169 
171  p.buildFrom(point);
172 
173  // sets the desired position of the point
174  vpFeaturePoint3D pd;
175  pd.set_XYZ(0, 0, 1);
176 
177  // define the task
178  // - we want an eye-in-hand control law
179  // - robot is controlled in the camera frame
181 
182  // we want to see a point on a point
183  std::cout << std::endl;
184  task.addFeature(p, pd);
185 
186  // set the gain") ;
187  task.setLambda(1);
188 
189  // Display task information
190  task.print();
191 
192  unsigned int iter = 0;
193  // loop
194  while (iter++ < 200) {
195  std::cout << "---------------------------------------------" << iter << std::endl;
196  vpColVector v;
197 
198  // get the robot position
199  robot.getPosition(wMc);
200  // Compute the position of the object frame in the camera frame
201  cMo = wMc.inverse() * wMo;
202 
203  // new point position
204  point.track(cMo);
205  p.buildFrom(point);
206  // std::cout << p.cP.t() ;
207  // std::cout << (p.get_s()).t() ;
208 
209  // compute the control law
210  v = task.computeControlLaw();
211  // send the camera velocity to the controller
213 
214  std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
215  }
216 
217  // Display task information
218  task.print();
219  return EXIT_SUCCESS;
220  } catch (const vpException &e) {
221  std::cout << "Catch a ViSP exception: " << e << std::endl;
222  return EXIT_FAILURE;
223  }
224 #else
225  (void)argc;
226  (void)argv;
227  std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
228  return EXIT_SUCCESS;
229 #endif
230 }
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
error that can be emitted by ViSP classes.
Definition: vpException.h:59
Class that defines the 3D point visual feature.
void set_XYZ(double X, double Y, double Z)
void buildFrom(const vpPoint &p)
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:77
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) vp_override
@ CAMERA_FRAME
Definition: vpRobot.h:82
@ EYEINHAND_CAMERA
Definition: vpServo.h:155
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:329
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:169
void setLambda(double c)
Definition: vpServo.h:976
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:132
vpColVector getError() const
Definition: vpServo.h:504
vpColVector computeControlLaw()
Definition: vpServo.cpp:703
Class that defines the simplest robot: a free flying camera.