Visual Servoing Platform  version 3.4.0
servoSimuFourPoints2DPolarCamVelocityDisplay.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a 2D visual servoing using 4 points with polar
33  * coordinates as visual feature.
34  *
35  * Authors:
36  * Fabien Spindler
37  *
38  *****************************************************************************/
39 
56 #include <visp3/core/vpConfig.h>
57 #include <visp3/core/vpDebug.h>
58 
59 #if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV))
60 
61 #include <stdio.h>
62 #include <stdlib.h>
63 
64 #include <visp3/core/vpCameraParameters.h>
65 #include <visp3/core/vpHomogeneousMatrix.h>
66 #include <visp3/core/vpImage.h>
67 #include <visp3/core/vpImagePoint.h>
68 #include <visp3/core/vpIoTools.h>
69 #include <visp3/core/vpMath.h>
70 #include <visp3/core/vpMeterPixelConversion.h>
71 #include <visp3/gui/vpDisplayGDI.h>
72 #include <visp3/gui/vpDisplayGTK.h>
73 #include <visp3/gui/vpDisplayOpenCV.h>
74 #include <visp3/gui/vpDisplayX.h>
75 #include <visp3/gui/vpProjectionDisplay.h>
76 #include <visp3/io/vpParseArgv.h>
77 #include <visp3/robot/vpSimulatorCamera.h>
78 #include <visp3/visual_features/vpFeatureBuilder.h>
79 #include <visp3/visual_features/vpFeaturePointPolar.h>
80 #include <visp3/vs/vpServo.h>
81 #include <visp3/vs/vpServoDisplay.h>
82 
83 // List of allowed command line options
84 #define GETOPTARGS "cdh"
85 
86 void usage(const char *name, const char *badparam);
87 bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);
88 
97 void usage(const char *name, const char *badparam)
98 {
99  fprintf(stdout, "\n\
100 Tests a control law with the following characteristics:\n\
101 - eye-in-hand control\n\
102 - articular velocity are computed\n\
103 - servo on 4 points,\n\
104 - internal and external camera view displays.\n\
105 \n\
106 SYNOPSIS\n\
107  %s [-c] [-d] [-h]\n", name);
108 
109  fprintf(stdout, "\n\
110 OPTIONS: Default\n\
111  -c\n\
112  Disable the mouse click. Useful to automaze the \n\
113  execution of this program without humain intervention.\n\
114 \n\
115  -d \n\
116  Turn off the display.\n\
117 \n\
118  -h\n\
119  Print the help.\n");
120 
121  if (badparam)
122  fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
123 }
136 bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display)
137 {
138  const char *optarg_;
139  int c;
140  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
141 
142  switch (c) {
143  case 'c':
144  click_allowed = false;
145  break;
146  case 'd':
147  display = false;
148  break;
149  case 'h':
150  usage(argv[0], NULL);
151  return false;
152 
153  default:
154  usage(argv[0], optarg_);
155  return false;
156  }
157  }
158 
159  if ((c == 1) || (c == -1)) {
160  // standalone param or error
161  usage(argv[0], NULL);
162  std::cerr << "ERROR: " << std::endl;
163  std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
164  return false;
165  }
166 
167  return true;
168 }
169 
170 int main(int argc, const char **argv)
171 {
172  try {
173  // Log file creation in /tmp/$USERNAME/log.dat
174  // This file contains by line:
175  // - the 6 computed camera velocities (m/s, rad/s) to achieve the task
176  // - the 6 mesured camera velocities (m/s, rad/s)
177  // - the 6 mesured joint positions (m, rad)
178  // - the 8 values of s - s*
179  std::string username;
180  // Get the user login name
181  vpIoTools::getUserName(username);
182 
183  // Create a log filename to save velocities...
184  std::string logdirname;
185 #if defined(_WIN32)
186  logdirname = "C:/temp/" + username;
187 #else
188  logdirname = "/tmp/" + username;
189 #endif
190 
191  // Test if the output path exist. If no try to create it
192  if (vpIoTools::checkDirectory(logdirname) == false) {
193  try {
194  // Create the dirname
195  vpIoTools::makeDirectory(logdirname);
196  } catch (...) {
197  std::cerr << std::endl << "ERROR:" << std::endl;
198  std::cerr << " Cannot create " << logdirname << std::endl;
199  exit(-1);
200  }
201  }
202  std::string logfilename;
203  logfilename = logdirname + "/log.dat";
204 
205  // Open the log file name
206  std::ofstream flog(logfilename.c_str());
207 
208  bool opt_click_allowed = true;
209  bool opt_display = true;
210 
211  // Read the command line options
212  if (getOptions(argc, argv, opt_click_allowed, opt_display) == false) {
213  exit(-1);
214  }
215 
216 // We open two displays, one for the internal camera view, the other one for
217 // the external view, using either X11, GTK or GDI.
218 #if defined VISP_HAVE_X11
219  vpDisplayX displayInt;
220  vpDisplayX displayExt;
221 #elif defined VISP_HAVE_GTK
222  vpDisplayGTK displayInt;
223  vpDisplayGTK displayExt;
224 #elif defined VISP_HAVE_GDI
225  vpDisplayGDI displayInt;
226  vpDisplayGDI displayExt;
227 #elif defined VISP_HAVE_OPENCV
228  vpDisplayOpenCV displayInt;
229  vpDisplayOpenCV displayExt;
230 #endif
231 
232  // open a display for the visualization
233 
234  vpImage<unsigned char> Iint(300, 300, 0);
235  vpImage<unsigned char> Iext(300, 300, 0);
236 
237  if (opt_display) {
238  displayInt.init(Iint, 0, 0, "Internal view");
239  displayExt.init(Iext, 330, 000, "External view");
240  }
241  vpProjectionDisplay externalview;
242 
243  double px = 500, py = 500;
244  double u0 = 150, v0 = 160;
245 
246  vpCameraParameters cam(px, py, u0, v0);
247 
248  vpServo task;
249  vpSimulatorCamera robot;
250 
251  std::cout << std::endl;
252  std::cout << "----------------------------------------------" << std::endl;
253  std::cout << " Test program for vpServo " << std::endl;
254  std::cout << " Eye-in-hand task control, articular velocity are computed" << std::endl;
255  std::cout << " Simulation " << std::endl;
256  std::cout << " task : servo 4 points " << std::endl;
257  std::cout << "----------------------------------------------" << std::endl;
258  std::cout << std::endl;
259 
260 // #define TRANS_Z_PURE
261 // #define TRANS_X_PURE
262 // #define ROT_Z_PURE
263 // #define ROT_X_PURE
264 #define COMPLEX
265 //#define PROBLEM
266 
267 #if defined(TRANS_Z_PURE)
268  // sets the initial camera location
269  vpHomogeneousMatrix cMo(0, 0, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
270  // sets the desired camera location
271  vpHomogeneousMatrix cMod(0, 0, 2, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
272 #elif defined(TRANS_X_PURE)
273  // sets the initial camera location
274  vpHomogeneousMatrix cMo(0.3, 0.3, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
275  // sets the desired camera location
276  vpHomogeneousMatrix cMod(0.5, 0.3, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
277 
278 #elif defined(ROT_Z_PURE)
279  // sets the initial camera location
280  vpHomogeneousMatrix cMo(0, 0, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
281  // sets the desired camera location
282  vpHomogeneousMatrix cMod(0, 0, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(180));
283 
284 #elif defined(ROT_X_PURE)
285  // sets the initial camera location
286  vpHomogeneousMatrix cMo(0, 0, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
287  // sets the desired camera location
288  vpHomogeneousMatrix cMod(0, 0, 3, vpMath::rad(45), vpMath::rad(0), vpMath::rad(0));
289 
290 #elif defined(COMPLEX)
291  // sets the initial camera location
292  vpHomogeneousMatrix cMo(0.2, 0.2, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
293  // sets the desired camera location
294  vpHomogeneousMatrix cMod(0, 0, 2.5, vpMath::rad(45), vpMath::rad(10), vpMath::rad(30));
295 
296 #elif defined(PROBLEM)
297  // Bad behavior with an interaction matrix computed from the desired
298  // features sets the initial camera location
299  vpHomogeneousMatrix cMo(0.2, 0.2, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
300  // sets the desired camera location
301  vpHomogeneousMatrix cMod(0.4, 0.2, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
302 
303 #endif
304  // Compute the position of the object in the world frame
305  vpHomogeneousMatrix wMc, wMo;
306  robot.getPosition(wMc);
307  wMo = wMc * cMo;
308 
309  vpHomogeneousMatrix cextMo(0, 0, 6, vpMath::rad(40), vpMath::rad(10), vpMath::rad(60));
310 
311  // sets the point coordinates in the object frame
312  vpPoint point[4];
313  point[0].setWorldCoordinates(-0.25, -0.25, 0);
314  point[1].setWorldCoordinates(0.25, -0.25, 0);
315  point[2].setWorldCoordinates(0.25, 0.25, 0);
316  point[3].setWorldCoordinates(-0.25, 0.25, 0);
317 
318  for (unsigned int i = 0; i < 4; i++)
319  externalview.insert(point[i]);
320 
321  // sets the desired position of the feature point s*"
322  vpFeaturePointPolar pd[4];
323 
324  // computes the point coordinates in the desired camera frame and
325  // its 2D coordinates
326  for (unsigned int i = 0; i < 4; i++) {
327  point[i].track(cMod);
328  // Computes the polar coordinates from the image point
329  // cartesian coordinates
330  vpFeatureBuilder::create(pd[i], point[i]);
331  }
332 
333  // computes the point coordinates in the camera frame and its 2D
334  // coordinates
335  for (unsigned int i = 0; i < 4; i++)
336  point[i].track(cMo);
337 
338  // sets the desired position of the point
339  vpFeaturePointPolar p[4];
340  for (unsigned int i = 0; i < 4; i++) {
341  // retrieve x,y and Z of the vpPoint structure to initialize the
342  // visual feature
343  vpFeatureBuilder::create(p[i], point[i]);
344  }
345 
346  // Define the task;
347  // - we want an eye-in-hand control law
348  // - articular velocity are computed
350  // task.setInteractionMatrixType(vpServo::MEAN) ;
351  // task.setInteractionMatrixType(vpServo::DESIRED) ;
353 
354  // Set the position of the end-effector frame in the camera frame as identity
356  vpVelocityTwistMatrix cVe(cMe);
357  task.set_cVe(cVe);
358 
359  // Set the Jacobian (expressed in the end-effector frame)
360  vpMatrix eJe;
361  robot.get_eJe(eJe);
362  task.set_eJe(eJe);
363 
364  // we want to see a point on a point
365  for (unsigned int i = 0; i < 4; i++)
366  task.addFeature(p[i], pd[i]);
367 
368  // set the gain
369  task.setLambda(1);
370 
371  std::cout << "\nDisplay task information: " << std::endl;
372  task.print();
373 
374  unsigned int iter = 0;
375  // loop
376  while (iter++ < 200) {
377  std::cout << "---------------------------------------------" << iter << std::endl;
378  vpColVector v;
379 
380  // Set the Jacobian (expressed in the end-effector frame)
381  // Since q is modified eJe is modified
382  robot.get_eJe(eJe);
383  task.set_eJe(eJe);
384 
385  // get the robot position
386  robot.getPosition(wMc);
387  // Compute the position of the object frame in the camera frame
388  cMo = wMc.inverse() * wMo;
389 
390  // Compute new point position
391  for (unsigned int i = 0; i < 4; i++) {
392  point[i].track(cMo);
393  // retrieve x,y and Z of the vpPoint structure to compute the feature
394  vpFeatureBuilder::create(p[i], point[i]);
395  }
396 
397  if (opt_display) {
398  vpDisplay::display(Iint);
399  vpDisplay::display(Iext);
400 
401  vpServoDisplay::display(task, cam, Iint);
402  externalview.display(Iext, cextMo, cMo, cam, vpColor::green);
403  vpDisplay::flush(Iint);
404  vpDisplay::flush(Iext);
405  }
406 
407  // Compute the control law
408  v = task.computeControlLaw();
409 
410  if (iter == 1) {
411  std::cout << "Display task information: " << std::endl;
412  task.print();
413  }
414 
417 
418  // Send the camera velocity to the controller
420  // Save velocities applied to the robot in the log file
421  // v[0], v[1], v[2] correspond to camera translation velocities in m/s
422  // v[3], v[4], v[5] correspond to camera rotation velocities in rad/s
423  flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";
424 
425  std::cout << "v: " << v.t() << std::endl;
426 
427  std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
428 
429  // Save feature error (s-s*) for the 4 feature points. For each feature
430  // point, we have 2 errors (along x and y axis). This error is
431  // expressed in meters in the camera frame
432  flog << (task.getError()).t() << " "; // s-s* for point 4
433  std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
434 
435  // Save current visual feature s = (rho,theta)
436  for (unsigned int i = 0; i < 4; i++) {
437  flog << p[i].get_rho() << " " << p[i].get_theta() << " ";
438  }
439  // Save current position of the points
440  for (unsigned int i = 0; i < 4; i++) {
441  flog << point[i].get_x() << " " << point[i].get_y() << " ";
442  }
443  flog << std::endl;
444 
445  if (iter == 1) {
446  vpImagePoint ip;
447  ip.set_i(10);
448  ip.set_j(10);
449 
450  std::cout << "\nClick in the internal camera view to continue..." << std::endl;
451  vpDisplay::displayText(Iint, ip, "A click to continue...", vpColor::red);
452  vpDisplay::flush(Iint);
453  vpDisplay::getClick(Iint);
454  }
455  }
456 
457  flog.close(); // Close the log file
458 
459  // Display task information
460  task.print();
461 
462  // Kill the task
463 
464  std::cout << "Final robot position with respect to the object frame:\n";
465  cMo.print();
466 
467  if (opt_display && opt_click_allowed) {
468  vpDisplay::displayText(Iint, 20, 20, "Click to quit...", vpColor::white);
469  vpDisplay::flush(Iint);
470  vpDisplay::getClick(Iint);
471  }
472  return EXIT_SUCCESS;
473  } catch (const vpException &e) {
474  std::cout << "Catch a ViSP exception: " << e << std::endl;
475  return EXIT_FAILURE;
476  }
477 }
478 #else
479 int main()
480 {
481  std::cout << "You do not have X11, or GTK, or GDI (Graphical Device Interface) functionalities to display images..." << std::endl;
482  std::cout << "Tip if you are on a unix-like system:" << std::endl;
483  std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
484  std::cout << "Tip if you are on a windows-like system:" << std::endl;
485  std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
486  return EXIT_SUCCESS;
487 }
488 #endif
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:153
void display(vpImage< unsigned char > &I, const vpHomogeneousMatrix &cextMo, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, const vpColor &color, const bool &displayTraj=false, unsigned int thickness=1)
static void makeDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:482
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:113
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
Implementation of an homogeneous matrix and operations on such kind of matrices.
Class that defines the simplest robot: a free flying camera.
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:490
Display for windows using GDI (available on any windows 32 platform).
Definition: vpDisplayGDI.h:128
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:506
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:150
error that can be emited by ViSP classes.
Definition: vpException.h:71
void init(vpImage< unsigned char > &I, int winx=-1, int winy=-1, const std::string &title="")
void track(const vpHomogeneousMatrix &cMo)
double get_y() const
Get the point y coordinate in the image plane.
Definition: vpPoint.cpp:458
static const vpColor green
Definition: vpColor.h:220
static void flush(const vpImage< unsigned char > &I)
Class that defines 2D image point visual feature with polar coordinates described in ...
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
static const vpColor red
Definition: vpColor.h:217
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:81
static bool checkDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:332
vpColVector getError() const
Definition: vpServo.h:278
void set_i(double ii)
Definition: vpImagePoint.h:166
vpColVector computeControlLaw()
Definition: vpServo.cpp:929
static void display(const vpImage< unsigned char > &I)
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
vpRowVector t() const
Generic class defining intrinsic camera parameters.
void setLambda(double c)
Definition: vpServo.h:404
static std::string getUserName()
Definition: vpIoTools.cpp:228
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:134
double get_x() const
Get the point x coordinate in the image plane.
Definition: vpPoint.cpp:456
void insert(vpForwardProjection &fp)
vpHomogeneousMatrix getPosition() const
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:567
static double rad(double deg)
Definition: vpMath.h:110
void set_j(double jj)
Definition: vpImagePoint.h:177
Implementation of column vector and the associated operations.
Definition: vpColVector.h:130
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:448
vpHomogeneousMatrix inverse() const
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:306
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:87
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
void get_eJe(vpMatrix &eJe)
interface with the image for feature display
static const vpColor white
Definition: vpColor.h:212
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:218
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)