Visual Servoing Platform  version 3.4.0
servoSimuFourPoints2DCamVelocity.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a 2D visual servoing using 4 points as visual feature.
33  *
34  * Authors:
35  * Eric Marchand
36  * Fabien Spindler
37  *
38  *****************************************************************************/
39 
54 #include <stdio.h>
55 #include <stdlib.h>
56 
57 #include <visp3/core/vpConfig.h>
58 #include <visp3/core/vpHomogeneousMatrix.h>
59 #include <visp3/core/vpMath.h>
60 #include <visp3/io/vpParseArgv.h>
61 #include <visp3/robot/vpSimulatorCamera.h>
62 #include <visp3/visual_features/vpFeatureBuilder.h>
63 #include <visp3/visual_features/vpFeaturePoint.h>
64 #include <visp3/vs/vpServo.h>
65 
66 // List of allowed command line options
67 #define GETOPTARGS "h"
68 
69 void usage(const char *name, const char *badparam);
70 bool getOptions(int argc, const char **argv);
71 
80 void usage(const char *name, const char *badparam)
81 {
82  fprintf(stdout, "\n\
83 Simulation of a 2D visual servoing:\n\
84 - servo on 4 points,\n\
85 - eye-in-hand control law,\n\
86 - articular velocity are computed,\n\
87 - without display.\n\
88  \n\
89 SYNOPSIS\n\
90  %s [-h]\n", name);
91 
92  fprintf(stdout, "\n\
93 OPTIONS: Default\n\
94  \n\
95  -h\n\
96  Print the help.\n");
97 
98  if (badparam) {
99  fprintf(stderr, "ERROR: \n");
100  fprintf(stderr, "\nBad parameter [%s]\n", badparam);
101  }
102 }
103 
114 bool getOptions(int argc, const char **argv)
115 {
116  const char *optarg_;
117  int c;
118  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
119 
120  switch (c) {
121  case 'h':
122  usage(argv[0], NULL);
123  return false;
124 
125  default:
126  usage(argv[0], optarg_);
127  return false;
128  }
129  }
130 
131  if ((c == 1) || (c == -1)) {
132  // standalone param or error
133  usage(argv[0], NULL);
134  std::cerr << "ERROR: " << std::endl;
135  std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
136  return false;
137  }
138 
139  return true;
140 }
141 
142 int main(int argc, const char **argv)
143 {
144 #if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
145  try {
146  // Read the command line options
147  if (getOptions(argc, argv) == false) {
148  exit(-1);
149  }
150 
151  vpServo task;
152  vpSimulatorCamera robot;
153 
154  std::cout << std::endl;
155  std::cout << "-------------------------------------------------------" << std::endl;
156  std::cout << " Test program for vpServo " << std::endl;
157  std::cout << " Eye-in-hand task control, articular velocity are computed" << std::endl;
158  std::cout << " Simulation " << std::endl;
159  std::cout << " task : servo 4 points " << std::endl;
160  std::cout << "-------------------------------------------------------" << std::endl;
161  std::cout << std::endl;
162 
163  // sets the initial camera location with respect to the object
165  cMo[0][3] = 0.1;
166  cMo[1][3] = 0.2;
167  cMo[2][3] = 2;
168 
169  // Compute the position of the object in the world frame
170  vpHomogeneousMatrix wMc, wMo;
171  robot.getPosition(wMc);
172  wMo = wMc * cMo;
173 
174  // sets the point coordinates in the object frame
175  vpPoint point[4];
176  point[0].setWorldCoordinates(-1, -1, 0);
177  point[1].setWorldCoordinates(1, -1, 0);
178  point[2].setWorldCoordinates(1, 1, 0);
179  point[3].setWorldCoordinates(-1, 1, 0);
180 
181  // computes the point coordinates in the camera frame and its 2D
182  // coordinates
183  for (unsigned int i = 0; i < 4; i++)
184  point[i].track(cMo);
185 
186  // sets the desired position of the point
187  vpFeaturePoint p[4];
188  for (unsigned int i = 0; i < 4; i++)
189  vpFeatureBuilder::create(p[i], point[i]); // retrieve x,y and Z of the vpPoint structure
190 
191  // sets the desired position of the point
192  vpFeaturePoint pd[4];
193 
194  pd[0].buildFrom(-0.1, -0.1, 1);
195  pd[1].buildFrom(0.1, -0.1, 1);
196  pd[2].buildFrom(0.1, 0.1, 1);
197  pd[3].buildFrom(-0.1, 0.1, 1);
198 
199  // define the task
200  // - we want an eye-in-hand control law
201  // - articular velocity are computed
204 
205  // Set the position of the end-effector frame in the camera frame as identity
207  vpVelocityTwistMatrix cVe(cMe);
208  task.set_cVe(cVe);
209 
210  // Set the Jacobian (expressed in the end-effector frame)
211  vpMatrix eJe;
212  robot.get_eJe(eJe);
213  task.set_eJe(eJe);
214 
215  // we want to see a point on a point
216  for (unsigned int i = 0; i < 4; i++)
217  task.addFeature(p[i], pd[i]);
218 
219  // set the gain
220  task.setLambda(1);
221 
222  // Display task information
223  task.print();
224 
225  unsigned int iter = 0;
226  // loop
227  while (iter++ < 1500) {
228  std::cout << "---------------------------------------------" << iter << std::endl;
229  vpColVector v;
230 
231  // Set the Jacobian (expressed in the end-effector frame)
232  // since q is modified eJe is modified
233  robot.get_eJe(eJe);
234  task.set_eJe(eJe);
235 
236  // get the robot position
237  robot.getPosition(wMc);
238  // Compute the position of the object frame in the camera frame
239  cMo = wMc.inverse() * wMo;
240 
241  // update new point position and corresponding features
242  for (unsigned int i = 0; i < 4; i++) {
243  point[i].track(cMo);
244  // retrieve x,y and Z of the vpPoint structure
245  vpFeatureBuilder::create(p[i], point[i]);
246  }
247  // since vpServo::MEAN interaction matrix is used, we need also to
248  // update the desired features at each iteration
249  pd[0].buildFrom(-0.1, -0.1, 1);
250  pd[1].buildFrom(0.1, -0.1, 1);
251  pd[2].buildFrom(0.1, 0.1, 1);
252  pd[3].buildFrom(-0.1, 0.1, 1);
253 
254  // compute the control law ") ;
255  v = task.computeControlLaw();
256 
257  // send the camera velocity to the controller ") ;
259 
260  std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
261  }
262 
263  // Display task information
264  task.print();
265  return EXIT_SUCCESS;
266  } catch (const vpException &e) {
267  std::cout << "Catch a ViSP exception: " << e << std::endl;
268  return EXIT_FAILURE;
269  }
270 #else
271  (void)argc;
272  (void)argv;
273  std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
274  return EXIT_SUCCESS;
275 #endif
276 }
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:153
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:113
void buildFrom(double x, double y, double Z)
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
Implementation of an homogeneous matrix and operations on such kind of matrices.
Class that defines the simplest robot: a free flying camera.
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:490
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:506
error that can be emited by ViSP classes.
Definition: vpException.h:71
void track(const vpHomogeneousMatrix &cMo)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:81
vpColVector getError() const
Definition: vpServo.h:278
vpColVector computeControlLaw()
Definition: vpServo.cpp:929
void setLambda(double c)
Definition: vpServo.h:404
vpHomogeneousMatrix getPosition() const
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:567
Implementation of column vector and the associated operations.
Definition: vpColVector.h:130
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:448
vpHomogeneousMatrix inverse() const
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:306
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
void get_eJe(vpMatrix &eJe)
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:218