Visual Servoing Platform  version 3.4.0
servoAfma4Point2DCamVelocityKalman.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * tests the control law
33  * eye-in-hand control
34  * velocity computed in the camera frame
35  *
36  * Authors:
37  * Eric Marchand
38  * Fabien Spindler
39  *
40  *****************************************************************************/
41 
56 #include <stdlib.h>
57 #include <visp3/core/vpConfig.h>
58 #include <visp3/core/vpDebug.h> // Debug trace
59 #if (defined(VISP_HAVE_AFMA4) && defined(VISP_HAVE_DC1394))
60 
61 #include <visp3/core/vpDisplay.h>
62 #include <visp3/core/vpImage.h>
63 #include <visp3/gui/vpDisplayGTK.h>
64 #include <visp3/gui/vpDisplayOpenCV.h>
65 #include <visp3/gui/vpDisplayX.h>
66 #include <visp3/sensor/vp1394TwoGrabber.h>
67 
68 #include <visp3/blob/vpDot2.h>
69 #include <visp3/core/vpException.h>
70 #include <visp3/core/vpHomogeneousMatrix.h>
71 #include <visp3/core/vpIoTools.h>
72 #include <visp3/core/vpLinearKalmanFilterInstantiation.h>
73 #include <visp3/core/vpMath.h>
74 #include <visp3/core/vpPoint.h>
75 #include <visp3/io/vpParseArgv.h>
76 #include <visp3/robot/vpRobotAfma4.h>
77 #include <visp3/visual_features/vpFeatureBuilder.h>
78 #include <visp3/visual_features/vpFeaturePoint.h>
79 #include <visp3/vs/vpAdaptiveGain.h>
80 #include <visp3/vs/vpServo.h>
81 #include <visp3/vs/vpServoDisplay.h>
82 
83 // List of allowed command line options
84 #define GETOPTARGS "hK:l:"
85 
86 typedef enum { K_NONE, K_VELOCITY, K_ACCELERATION } KalmanType;
87 
97 void usage(const char *name, const char *badparam, KalmanType &kalman)
98 {
99  fprintf(stdout, "\n\
100 Tests a control law with the following characteristics:\n\
101 - eye-in-hand control\n\
102 - camera velocity are computed\n\
103 - servo on 1 points.\n\
104 - Kalman filtering\n\
105  \n\
106 SYNOPSIS\n\
107  %s [-K <0|1|2|3>] [-h]\n", name);
108 
109  fprintf(stdout, "\n\
110 OPTIONS: Default\n\
111  -l <%%f> \n\
112  Set the constant gain. By default adaptive gain. \n\
113  \n\
114  -K <0|1|2> %d\n\
115  Kalman filtering:\n\
116  0: none\n\
117  1: velocity model\n\
118  2: acceleration model\n\
119  \n\
120  -h\n\
121  Print the help.\n", (int)kalman);
122 
123  if (badparam) {
124  fprintf(stderr, "ERROR: \n");
125  fprintf(stderr, "\nBad parameter [%s]\n", badparam);
126  }
127 }
128 
143 bool getOptions(int argc, const char **argv, KalmanType &kalman, bool &doAdaptativeGain,
144  vpAdaptiveGain &lambda) // gain lambda
145 {
146  const char *optarg;
147  int c;
148  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg)) > 1) {
149 
150  switch (c) {
151  case 'K':
152  kalman = (KalmanType)atoi(optarg);
153  break;
154  case 'l':
155  doAdaptativeGain = false;
156  lambda.initFromConstant(atof(optarg));
157  break;
158  case 'h':
159  usage(argv[0], NULL, kalman);
160  return false;
161  break;
162 
163  default:
164  usage(argv[0], optarg, kalman);
165  return false;
166  break;
167  }
168  }
169 
170  if ((c == 1) || (c == -1)) {
171  // standalone param or error
172  usage(argv[0], NULL, kalman);
173  std::cerr << "ERROR: " << std::endl;
174  std::cerr << " Bad argument " << optarg << std::endl << std::endl;
175  return false;
176  }
177 
178  return true;
179 }
180 
181 int main(int argc, const char **argv)
182 {
183  try {
184  KalmanType opt_kalman = K_NONE;
185  vpAdaptiveGain lambda; // Gain de la commande
186  bool doAdaptativeGain = true; // Compute adaptative gain
187  lambda.initStandard(4, 0.2, 40);
188  int opt_cam_frequency = 60; // 60 Hz
189 
190  // Read the command line options
191  if (getOptions(argc, argv, opt_kalman, doAdaptativeGain, lambda) == false) {
192  return (-1);
193  }
194 
195  // Log file creation in /tmp/$USERNAME/log.dat
196  // This file contains by line:
197  // - the 6 computed cam velocities (m/s, rad/s) to achieve the task
198  // - the 6 mesured joint velocities (m/s, rad/s)
199  // - the 6 mesured joint positions (m, rad)
200  // - the 2 values of s - s*
201  std::string username;
202  // Get the user login name
203  vpIoTools::getUserName(username);
204 
205  // Create a log filename to save velocities...
206  std::string logdirname;
207  logdirname = "/tmp/" + username;
208 
209  // Test if the output path exist. If no try to create it
210  if (vpIoTools::checkDirectory(logdirname) == false) {
211  try {
212  // Create the dirname
213  vpIoTools::makeDirectory(logdirname);
214  } catch (...) {
215  std::cerr << std::endl << "ERROR:" << std::endl;
216  std::cerr << " Cannot create " << logdirname << std::endl;
217  exit(-1);
218  }
219  }
220  std::string logfilename;
221  logfilename = logdirname + "/log.dat";
222 
223  // Open the log file name
224  std::ofstream flog(logfilename.c_str());
225 
226  vpServo task;
227 
229  vp1394TwoGrabber g(false);
231  switch (opt_cam_frequency) {
232  case 15:
233  g.setFramerate(vp1394TwoGrabber::vpFRAMERATE_15);
234  break;
235  case 30:
236  g.setFramerate(vp1394TwoGrabber::vpFRAMERATE_30);
237  break;
238  case 60:
239  g.setFramerate(vp1394TwoGrabber::vpFRAMERATE_60);
240  break;
241  }
242  g.open(I);
243 
244  for (int i = 0; i < 10; i++) // 10 acquisition to warm up the camera
245  g.acquire(I);
246 
247 #ifdef VISP_HAVE_X11
248  vpDisplayX display(I, 100, 100, "Current image");
249 #elif defined(VISP_HAVE_OPENCV)
250  vpDisplayOpenCV display(I, 100, 100, "Current image");
251 #elif defined(VISP_HAVE_GTK)
252  vpDisplayGTK display(I, 100, 100, "Current image");
253 #endif
254 
256  vpDisplay::flush(I);
257 
258  std::cout << std::endl;
259  std::cout << "-------------------------------------------------------" << std::endl;
260  std::cout << "Test program for target motion compensation using a Kalman "
261  "filter "
262  << std::endl;
263  std::cout << "Eye-in-hand task control, velocity computed in the camera frame" << std::endl;
264  std::cout << "Task : servo a point \n" << std::endl;
265 
266  // Kalman filtering
267  switch (opt_kalman) {
268  case K_NONE:
269  std::cout << "Servo with no target motion compensation (see -K option)\n";
270  break;
271  case K_VELOCITY:
272  std::cout << "Servo with target motion compensation using a Kalman filter\n"
273  << "with constant velocity modelization (see -K option)\n";
274  break;
275  case K_ACCELERATION:
276  std::cout << "Servo with target motion compensation using a Kalman filter\n"
277  << "with constant acceleration modelization (see -K option)\n";
278  break;
279  }
280  std::cout << "-------------------------------------------------------" << std::endl;
281  std::cout << std::endl;
282 
283  vpDot2 dot;
284 
285  std::cout << "Click on the dot..." << std::endl;
286  dot.setGraphics(true);
287  dot.initTracking(I);
288  vpImagePoint cog;
289  cog = dot.getCog();
291  vpDisplay::flush(I);
292 
293  vpRobotAfma4 robot;
294 
295  double px = 1000;
296  double py = 1000;
297  double u0 = I.getWidth() / 2.;
298  double v0 = I.getHeight() / 2.;
299 
300  vpCameraParameters cam(px, py, u0, v0);
301 
302  // Sets the current position of the visual feature
303  vpFeaturePoint p;
304  vpFeatureBuilder::create(p, cam, dot);
305 
306  // Sets the desired position of the visual feature
307  vpFeaturePoint pd;
308  pd.buildFrom(0, 0, 1);
309 
310  // Define the task
311  // - we want an eye-in-hand control law
312  // - robot is controlled in the camera frame
313  task.setServo(vpServo::EYEINHAND_CAMERA);
314 
315  // - we want to see a point on a point
316  std::cout << std::endl;
317  task.addFeature(p, pd);
318 
319  // - set the gain
320  task.setLambda(lambda);
321 
322  // Display task information
323  // task.print() ;
324 
325  //--------------------------------------------------------------------------
327  //--------------------------------------------------------------------------
328 
331 
332  // Initialize the kalman filter
333  unsigned int nsignal = 2; // The two values of dedt
334  double rho = 0.3;
335  vpColVector sigma_state;
336  vpColVector sigma_measure(nsignal);
337  unsigned int state_size = 0; // Kalman state vector size
338 
339  switch (opt_kalman) {
340  case K_VELOCITY: {
341  // Set the constant velocity state model used for the filtering
343  state_size = kalman.getStateSize();
344  sigma_state.resize(state_size * nsignal);
345  sigma_state = 0.00001; // Same state variance for all signals
346  sigma_measure = 0.05; // Same measure variance for all the signals
347  double dummy = 0; // non used parameter dt for the velocity state model
348  kalman.initFilter(nsignal, sigma_state, sigma_measure, rho, dummy);
349 
350  break;
351  }
352  case K_ACCELERATION: {
353  // Set the constant acceleration state model used for the filtering
355  state_size = kalman.getStateSize();
356  sigma_state.resize(state_size * nsignal);
357  sigma_state = 0.00001; // Same variance for all the signals
358  sigma_measure = 0.05; // Same measure variance for all the signals
359  double dt = 1. / opt_cam_frequency;
360  kalman.initFilter(nsignal, sigma_state, sigma_measure, rho, dt);
361  break;
362  }
363  default:
364  break;
365  }
366 
368 
369  int iter = 0;
370 
371  double t_1, Tv_0;
372  vpColVector vm(6), vm_0(6);
373  vpColVector v(6), v1(6), v2(6); // robot velocities
374  // task error
375  vpColVector err(2), err_0(2), err_1(2);
376  vpColVector dedt_filt(2), dedt_mes(2);
377 
378  t_1 = vpTime::measureTimeMs(); // t_1: time at previous iter
379 
380  Tv_0 = 0;
381 
382  //
383  // Warning: In all varaible names,
384  // _0 means the value for the current iteration (t=0)
385  // _1 means the value for the previous iteration (t=-1)
386  // _2 means the value for the previous previous iteration (t=-2)
387  //
388  std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
389  for (;;) {
390  double t_0 = vpTime::measureTimeMs(); // t_0: current time
391  // Temps de la boucle d'asservissement
392  double Tv = (double)(t_0 - t_1) / 1000.0; // temps d'une iteration en s
393  // !
394  // std::cout << "time iter : " << Tv << std::endl;
395 
396  // Update time for next iteration
397  t_1 = t_0;
398 
400 
401  // Acquire a new image from the camera
402  g.acquire(I);
403 
404  // Display this image
406 
407  // Achieve the tracking of the dot in the image
408  dot.track(I);
409  vpImagePoint cog = dot.getCog();
410 
411  // Display a green cross at the center of gravity position in the image
413 
414  // Update the point feature from the dot location
415  vpFeatureBuilder::create(p, cam, dot);
416 
417  //----------------------------------------------------------------------
419  //----------------------------------------------------------------------
420  vm_0 = vm;
421 
422  // Update current loop time and previous one
423  double Tv_1 = Tv_0;
424  Tv_0 = Tv;
425 
426  // Compute the visual servoing skew vector
427  v1 = task.computeControlLaw();
428 
429  err = task.error;
430 
432  if (iter == 0) {
433  err_0 = 0;
434  err_1 = 0;
435  dedt_mes = 0;
436  dedt_filt = 0;
437  } else {
438  err_1 = err_0;
439  err_0 = err;
440 
441  dedt_mes = (err_0 - err_1) / (Tv_1)-task.J1 * vm_0;
442  }
444  if (iter <= 1) {
445  dedt_mes = 0;
446  }
447 
448  //----------------------------------------------------------------------
449  //----------------------- Kalman Filter Equations ----------------------
450  //----------------------------------------------------------------------
451  // Kalman filtering
452  switch (opt_kalman) {
453  case K_NONE:
454  dedt_filt = 0;
455  break;
456  case K_VELOCITY:
457  case K_ACCELERATION:
458  kalman.filter(dedt_mes);
459  for (unsigned int i = 0; i < nsignal; i++) {
460  dedt_filt[i] = kalman.Xest[i * state_size];
461  }
462  break;
463  }
464 
466  vpMatrix J1p = task.getTaskJacobianPseudoInverse();
467  v2 = -J1p * dedt_filt;
468  // std::cout << "task J1p: " << J1p.t() << std::endl ;
469  // std::cout << "dedt_filt: " << dedt_filt.t() << std::endl ;
470 
471  v = v1 + v2;
472 
473  // Display the current and desired feature points in the image display
474  vpServoDisplay::display(task, cam, I);
475 
476  // std::cout << "v2 : " << v2.t() << std::endl ;
477  // std::cout << "v1 : " << v1.t() << std::endl ;
478 
479  // std::cout << "v : " << v.t();
480 
481  // Apply the camera velocities to the robot
483 
484  // Save loop time
485  flog << Tv_0 << " ";
486 
487  // Save velocities applied to the robot in the log file
488  // v[0], v[1], v[2] correspond to camera translation velocities in m/s
489  // v[3], v[4], v[5] correspond to camera rotation velocities in rad/s
490  flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";
491 
492  // Save feature error (s-s*) for the feature point. For this feature
493  // point, we have 2 errors (along x and y axis). This error is
494  // expressed in meters in the camera frame
495  flog << task.error[0] << " " << task.error[1] << " ";
496 
497  // Save feature error (s-s*) in pixels in the image.
498  flog << cog.get_u() - cam.get_u0() << " " << cog.get_v() - cam.get_v0() << " ";
499 
500  // Save de/dt
501  flog << dedt_mes[0] << " " << dedt_mes[1] << " ";
502 
503  // Save de/dt filtered
504  flog << dedt_filt[0] << " " << dedt_filt[1] << " ";
505 
506  flog << std::endl;
507 
508  // Flush the display
509  vpDisplay::flush(I);
510 
511  iter++;
512  }
513 
514  flog.close(); // Close the log file
515 
516  // Display task information
517  task.print();
518 
519  return EXIT_SUCCESS;
520  } catch (const vpException &e) {
521  std::cout << "Catch a ViSP exception: " << e << std::endl;
522  return EXIT_FAILURE;
523  }
524 }
525 
526 #else
527 int main()
528 {
529  std::cout << "You do not have an afma4 robot connected to your computer..." << std::endl;
530  return EXIT_SUCCESS;
531 }
532 #endif
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:153
static void makeDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:482
double get_v() const
Definition: vpImagePoint.h:273
Adaptive gain computation.
unsigned int getStateSize()
double get_u0() const
void buildFrom(double x, double y, double Z)
unsigned int getWidth() const
Definition: vpImage.h:246
void initFilter(unsigned int nsignal, vpColVector &sigma_state, vpColVector &sigma_measure, double rho, double dt)
void setGraphics(bool activate)
Definition: vpDot2.h:314
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &velocity)
double get_u() const
Definition: vpImagePoint.h:262
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:150
error that can be emited by ViSP classes.
Definition: vpException.h:71
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
vpColVector Xest
static const vpColor green
Definition: vpColor.h:220
This tracker is meant to track a blob (connex pixels with same gray level) on a vpImage.
Definition: vpDot2.h:126
static void flush(const vpImage< unsigned char > &I)
VISP_EXPORT double measureTimeMs()
Definition: vpTime.cpp:126
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
static bool checkDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:332
vpImagePoint getCog() const
Definition: vpDot2.h:180
void initStandard(double gain_at_zero, double gain_at_infinity, double slope_at_zero)
Initialize the velocity controller.
Definition: vpRobot.h:66
double get_v0() const
static void display(const vpImage< unsigned char > &I)
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Generic class defining intrinsic camera parameters.
static std::string getUserName()
Definition: vpIoTools.cpp:228
void initFromConstant(double c)
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:134
void track(const vpImage< unsigned char > &I, bool canMakeTheWindowGrow=true)
Definition: vpDot2.cpp:441
vpRobot::vpRobotStateType setRobotState(vpRobot::vpRobotStateType newState)
void resize(unsigned int i, bool flagNullify=true)
Definition: vpColVector.h:310
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
Implementation of column vector and the associated operations.
Definition: vpColVector.h:130
void getVelocity(const vpRobot::vpControlFrameType frame, vpColVector &velocity)
Control of Irisa&#39;s cylindrical robot named Afma4.
Definition: vpRobotAfma4.h:178
void initTracking(const vpImage< unsigned char > &I, unsigned int size=0)
Definition: vpDot2.cpp:253
This class provides an implementation of some specific linear Kalman filters.
unsigned int getHeight() const
Definition: vpImage.h:188
Class for firewire ieee1394 video devices using libdc1394-2.x api.
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:87
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
static const vpColor blue
Definition: vpColor.h:223