Visual Servoing Platform  version 3.4.0
photometricVisualServoingWithoutVpServo.cpp

Implemented from [6].

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2019 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Authors:
* Eric Marchand
* Christophe Collewet
*
*****************************************************************************/
#include <visp3/core/vpDebug.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpImageTools.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpTime.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpMath.h>
#include <visp3/gui/vpDisplayD3D.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/visual_features/vpFeatureLuminance.h>
#include <stdlib.h>
#include <visp3/robot/vpImageSimulator.h>
#define Z 1
#include <visp3/core/vpIoTools.h>
#include <visp3/io/vpParseArgv.h>
// List of allowed command line options
#define GETOPTARGS "cdi:n:h"
void usage(const char *name, const char *badparam, std::string ipath, int niter);
bool getOptions(int argc, const char **argv, std::string &ipath, bool &click_allowed, bool &display, int &niter);
void usage(const char *name, const char *badparam, std::string ipath, int niter)
{
fprintf(stdout, "\n\
Tracking of Surf key-points.\n\
\n\
SYNOPSIS\n\
%s [-i <input image path>] [-c] [-d] [-n <number of iterations>] [-h]\n",
name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-i <input image path> %s\n\
Set image input path.\n\
From this path read \"doisneau/doisneau.jpg\"\n\
images. \n\
Setting the VISP_INPUT_IMAGE_PATH environment\n\
variable produces the same behaviour than using\n\
this option.\n\
\n\
-c\n\
Disable the mouse click. Useful to automaze the \n\
execution of this program without humain intervention.\n\
\n\
-d \n\
Turn off the display.\n\
\n\
-n %%d %d\n\
Number of iterations.\n\
\n\
-h\n\
Print the help.\n",
ipath.c_str(), niter);
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, std::string &ipath, bool &click_allowed, bool &display, int &niter)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'c':
click_allowed = false;
break;
case 'd':
display = false;
break;
case 'i':
ipath = optarg_;
break;
case 'n':
niter = atoi(optarg_);
break;
case 'h':
usage(argv[0], NULL, ipath, niter);
return false;
default:
usage(argv[0], optarg_, ipath, niter);
return false;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL, ipath, niter);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
try {
std::string env_ipath;
std::string opt_ipath;
std::string ipath;
std::string filename;
bool opt_click_allowed = true;
bool opt_display = true;
int opt_niter = 400;
// Get the visp-images-data package path or VISP_INPUT_IMAGE_PATH
// environment variable value
// Set the default input path
if (!env_ipath.empty())
ipath = env_ipath;
// Read the command line options
if (getOptions(argc, argv, opt_ipath, opt_click_allowed, opt_display, opt_niter) == false) {
return (-1);
}
// Get the option values
if (!opt_ipath.empty())
ipath = opt_ipath;
// Compare ipath and env_ipath. If they differ, we take into account
// the input path comming from the command line option
if (!opt_ipath.empty() && !env_ipath.empty()) {
if (ipath != env_ipath) {
std::cout << std::endl << "WARNING: " << std::endl;
std::cout << " Since -i <visp image path=" << ipath << "> "
<< " is different from VISP_IMAGE_PATH=" << env_ipath << std::endl
<< " we skip the environment variable." << std::endl;
}
}
// Test if an input path is set
if (opt_ipath.empty() && env_ipath.empty()) {
usage(argv[0], NULL, ipath, opt_niter);
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Use -i <visp image path> option or set VISP_INPUT_IMAGE_PATH " << std::endl
<< " environment variable to specify the location of the " << std::endl
<< " image path where test images are located." << std::endl
<< std::endl;
exit(-1);
}
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.pgm");
vpImageIo::read(Itexture, filename);
for (int i = 0; i < 4; i++)
X[i].resize(3);
// Top left corner
X[0][0] = -0.3;
X[0][1] = -0.215;
X[0][2] = 0;
// Top right corner
X[1][0] = 0.3;
X[1][1] = -0.215;
X[1][2] = 0;
// Bottom right corner
X[2][0] = 0.3;
X[2][1] = 0.215;
X[2][2] = 0;
// Bottom left corner
X[3][0] = -0.3;
X[3][1] = 0.215;
X[3][2] = 0;
sim.init(Itexture, X);
vpCameraParameters cam(870, 870, 160, 120);
// ----------------------------------------------------------
// Create the framegraber (here a simulated image)
vpImage<unsigned char> I(240, 320, 0);
// camera desired position
cdMo[2][3] = 1;
// set the robot at the desired position
sim.setCameraPosition(cdMo);
sim.getImage(I, cam); // and aquire the image Id
Id = I;
// display the image
#if defined VISP_HAVE_X11
#elif defined VISP_HAVE_GDI
#elif defined VISP_HAVE_GTK
#elif defined VISP_HAVE_OPENCV
#endif
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_OPENCV)
if (opt_display) {
d.init(I, 20, 10, "Photometric visual servoing : s");
}
if (opt_display && opt_click_allowed) {
std::cout << "Click in the image to continue..." << std::endl;
}
#endif
// ----------------------------------------------------------
// position the robot at the initial position
// ----------------------------------------------------------
// camera desired position
cMo.buildFrom(0, 0, 1.2, vpMath::rad(15), vpMath::rad(-5), vpMath::rad(20));
vpHomogeneousMatrix wMo; // Set to identity
vpHomogeneousMatrix wMc; // Camera position in the world frame
// set the robot at the desired position
I = 0;
sim.getImage(I, cam); // and aquire the image Id
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_GTK)
if (opt_display) {
}
if (opt_display && opt_click_allowed) {
std::cout << "Click in the image to continue..." << std::endl;
}
#endif
Idiff = I;
// Affiche de l'image de difference
#if defined VISP_HAVE_X11
#elif defined VISP_HAVE_GDI
#elif defined VISP_HAVE_GTK
#endif
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_GTK)
if (opt_display) {
d1.init(Idiff, 40 + static_cast<int>(I.getWidth()), 10, "photometric visual servoing : s-s* ");
}
#endif
// create the robot (here a simulated free flying camera)
robot.setSamplingTime(0.04);
wMc = wMo * cMo.inverse();
robot.setPosition(wMc);
// ------------------------------------------------------
// Visual feature, interaction matrix, error
// s, Ls, Lsd, Lt, Lp, etc
// ------------------------------------------------------
// current visual feature built from the image
// (actually, this is the image...)
sI.init(I.getHeight(), I.getWidth(), Z);
sI.buildFrom(I);
// desired visual feature built from the image
sId.init(I.getHeight(), I.getWidth(), Z);
sId.buildFrom(Id);
// Matrice d'interaction, Hessien, erreur,...
vpMatrix Lsd; // matrice d'interaction a la position desiree
vpMatrix Hsd; // hessien a la position desiree
vpMatrix H; // Hessien utilise pour le levenberg-Marquartd
vpColVector error; // Erreur I-I*
// Compute the interaction matrix
// link the variation of image intensity to camera motion
// here it is computed at the desired position
sId.interaction(Lsd);
// Compute the Hessian H = L^TL
Hsd = Lsd.AtA();
// Compute the Hessian diagonal for the Levenberg-Marquartd
// optimization process
unsigned int n = 6;
vpMatrix diagHsd(n, n);
diagHsd.eye(n);
for (unsigned int i = 0; i < n; i++)
diagHsd[i][i] = Hsd[i][i];
// ------------------------------------------------------
// Control law
double lambda; // gain
vpColVector v; // camera velocity send to the robot
// ----------------------------------------------------------
// Minimisation
double mu; // mu = 0 : Gauss Newton ; mu != 0 : LM
double lambdaGN;
mu = 0.01;
lambda = 30;
lambdaGN = 30;
// set a velocity control mode
// ----------------------------------------------------------
int iter = 1;
int iterGN = 90; // swicth to Gauss Newton after iterGN iterations
double normeError = 0;
vpChrono chrono;
chrono.start();
do {
std::cout << "--------------------------------------------" << iter++ << std::endl;
// Acquire the new image
sim.getImage(I, cam);
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_GTK)
if (opt_display) {
}
#endif
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_GTK)
if (opt_display) {
}
#endif
// Compute current visual feature
sI.buildFrom(I);
// compute current error
sI.error(sId, error);
normeError = (error.sumSquare());
std::cout << "|e| " << normeError << std::endl;
// double t = vpTime::measureTimeMs() ;
// ---------- Levenberg Marquardt method --------------
{
if (iter > iterGN) {
mu = 0.0001;
lambda = lambdaGN;
}
// Compute the levenberg Marquartd term
{
H = ((mu * diagHsd) + Hsd).inverseByLU();
}
// compute the control law
e = H * Lsd.t() * error;
v = -lambda * e;
}
std::cout << "lambda = " << lambda << " mu = " << mu;
std::cout << " |Tc| = " << sqrt(v.sumSquare()) << std::endl;
// send the robot velocity
wMc = robot.getPosition();
cMo = wMc.inverse() * wMo;
} while (normeError > 10000 && iter < opt_niter);
chrono.stop();
std::cout << "Time to convergence: " << chrono.getDurationMs() << " ms" << std::endl;
v = 0;
return EXIT_SUCCESS;
} catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
return EXIT_FAILURE;
}
#else
(void)argc;
(void)argv;
std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
return EXIT_SUCCESS;
#endif
}