Visual Servoing Platform  version 3.2.0 under development (2019-01-22)
tutorial-mb-generic-tracker-rgbd-realsense.cpp
#include <iostream>
#include <visp3/core/vpConfig.h>
#if defined(VISP_HAVE_REALSENSE2) && defined(VISP_HAVE_OPENCV)
#include <visp3/core/vpDisplay.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpXmlParserCamera.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/mbt/vpMbGenericTracker.h>
#include <visp3/sensor/vpRealSense2.h>
#include <visp3/vision/vpKeyPoint.h>
int main(int argc, char *argv[])
{
std::string config_color = "", config_depth = "";
std::string model_color = "", model_depth = "";
std::string init_file = "";
bool use_ogre = false;
bool use_scanline = false;
bool use_edges = true;
bool use_klt = false;
bool use_depth = true;
bool learn = false;
bool auto_init = false;
double proj_error_threshold = 25;
std::string learning_data = "learning/data-learned.bin";
bool display_projection_error = false;
for (int i = 1; i < argc; i++) {
if (std::string(argv[i]) == "--config_color" && i+1 < argc) {
config_color = std::string(argv[i+1]);
} else if (std::string(argv[i]) == "--config_depth" && i+1 < argc) {
config_depth = std::string(argv[i+1]);
} else if (std::string(argv[i]) == "--model_color" && i+1 < argc) {
model_color = std::string(argv[i+1]);
} else if (std::string(argv[i]) == "--model_depth" && i+1 < argc) {
model_depth = std::string(argv[i+1]);
} else if (std::string(argv[i]) == "--init_file" && i+1 < argc) {
init_file = std::string(argv[i+1]);
} else if (std::string(argv[i]) == "--proj_error_threshold" && i+1 < argc) {
proj_error_threshold = std::atof(argv[i+1]);
} else if (std::string(argv[i]) == "--use_ogre") {
use_ogre = true;
} else if (std::string(argv[i]) == "--use_scanline") {
use_scanline = true;
} else if (std::string(argv[i]) == "--use_edges" && i+1 < argc) {
use_edges = (std::atoi(argv[i+1]) == 0 ? false : true);
} else if (std::string(argv[i]) == "--use_klt" && i+1 < argc) {
use_klt = (std::atoi(argv[i+1]) == 0 ? false : true);
} else if (std::string(argv[i]) == "--use_depth" && i+1 < argc) {
use_depth = (std::atoi(argv[i+1]) == 0 ? false : true);
} else if (std::string(argv[i]) == "--learn") {
learn = true;
} else if (std::string(argv[i]) == "--learning_data" && i+1 < argc) {
learning_data = argv[i+1];
} else if (std::string(argv[i]) == "--auto_init") {
auto_init = true;
} else if (std::string(argv[i]) == "--display_proj_error") {
display_projection_error = true;
} else if (std::string(argv[i]) == "--help" || std::string(argv[i]) == "-h") {
std::cout << "Usage: \n" << argv[0]
<< " [--config_color <object.xml>] [--config_depth <object.xml>] [--model_color <object.cao>] [--model_depth <object.cao>]"
" [--init_file <object.init>] [--use_ogre] [--use_scanline]"
" [--proj_error_threshold <threshold between 0 and 90> (default: "<< proj_error_threshold << ")]"
" [--use_edges <0|1> (default: 1)] [--use_klt <0|1> (default: 0)] [--use_depth <0|1> (default: 1)]"
" [--learn] [--auto_init] [--learning_data <path to .bin> (default: learning/data-learned.bin)]"
" [--display_proj_error]" << std::endl;
std::cout << "\nExample to track a 4.2 cm width cube with manual initialization:\n" << argv[0]
<< " --config_color cube.xml --config_depth cube_depth.xml"
<< " --model_color cube.cao --model_depth cube.cao"
<< " --init_file cube.init"
<< " --use_edges 1 --use_klt 1 --use_depth 1"
<< std::endl;
std::cout << "\nExample to learn the 4.2 cm width cube:\n" << argv[0]
<< " --config_color cube.xml --config_depth cube_depth.xml"
<< " --model_color cube.cao --model_depth cube.cao"
<< " --init_file cube.init"
<< " --use_edges 1 --use_klt 1 --use_depth 1"
<< " --learn"
<< std::endl;
std::cout << "\nExample to track a 4.2 cm width cube with initialization from learning database:\n" << argv[0]
<< " --config_color cube.xml --config_depth cube_depth.xml"
<< " --model_color cube.cao --model_depth cube.cao"
<< " --init_file cube.init"
<< " --use_edges 1 --use_klt 1 --use_depth 1"
<< " --auto_init"
<< std::endl;
return 0;
}
}
std::cout << "Tracked features: " << std::endl;
std::cout << " Use edges : " << use_edges << std::endl;
std::cout << " Use klt : " << use_klt << std::endl;
std::cout << " Use depth : " << use_depth << std::endl;
std::cout << "Tracker options: " << std::endl;
std::cout << " Use ogre : " << use_ogre << std::endl;
std::cout << " Use scanline: " << use_scanline << std::endl;
std::cout << " Proj. error : " << proj_error_threshold << std::endl;
std::cout << " Display proj. error: " << display_projection_error << std::endl;
std::cout << "Config files: " << std::endl;
std::cout << " Config color: " << "\"" << config_color << "\"" << std::endl;
std::cout << " Config depth: " << "\"" << config_depth << "\"" << std::endl;
std::cout << " Model color : " << "\"" << model_color << "\"" << std::endl;
std::cout << " Model depth : " << "\"" << model_depth << "\"" << std::endl;
std::cout << " Init file : " << "\"" << init_file << "\"" << std::endl;
std::cout << "Learning options : " << std::endl;
std::cout << " Learn : " << learn << std::endl;
std::cout << " Auto init : " << auto_init << std::endl;
std::cout << " Learning data: " << learning_data << std::endl;
if (!use_edges && !use_klt && !use_depth) {
std::cout << "You must choose at least one visual features between edge, KLT and depth." << std::endl;
return EXIT_FAILURE;
}
if (config_color.empty() || config_depth.empty() || model_color.empty() || model_depth.empty() || init_file.empty()) {
std::cout << "config_color.empty() || config_depth.empty() || model_color.empty() || model_depth.empty() || init_file.empty()" << std::endl;
return EXIT_FAILURE;
}
vpRealSense2 realsense;
int width = 640, height = 480;
int fps = 30;
rs2::config config;
config.enable_stream(RS2_STREAM_COLOR, width, height, RS2_FORMAT_RGBA8, fps);
config.enable_stream(RS2_STREAM_DEPTH, width, height, RS2_FORMAT_Z16, fps);
try {
realsense.open(config);
}
catch (const vpException &e) {
std::cout << "Catch an exception: " << e.what() << std::endl;
std::cout << "Check if the Realsense camera is connected..." << std::endl;
return EXIT_SUCCESS;
}
std::cout << "Sensor internal camera parameters for color camera: " << cam_color << std::endl;
std::cout << "Sensor internal camera parameters for depth camera: " << cam_depth << std::endl;
vpImage<vpRGBa> I_color(height, width);
vpImage<unsigned char> I_gray(height, width);
vpImage<unsigned char> I_depth(height, width);
vpImage<uint16_t> I_depth_raw(height, width);
unsigned int _posx = 100, _posy = 50;
#ifdef VISP_HAVE_X11
vpDisplayX d1, d2;
#elif defined(VISP_HAVE_GDI)
vpDisplayGDI d1, d2;
#elif defined(VISP_HAVE_OPENCV)
#endif
if (use_edges || use_klt)
d1.init(I_gray, _posx, _posy, "Color stream");
if (use_depth)
d2.init(I_depth, _posx + I_gray.getWidth()+10, _posy, "Depth stream");
while (true) {
realsense.acquire((unsigned char *) I_color.bitmap, (unsigned char *) I_depth_raw.bitmap, NULL, NULL);
if (use_edges || use_klt) {
vpImageConvert::convert(I_color, I_gray);
vpDisplay::displayText(I_gray, 20, 20, "Click when ready.", vpColor::red);
if (vpDisplay::getClick(I_gray, false)) {
break;
}
}
if (use_depth) {
vpImageConvert::createDepthHistogram(I_depth_raw, I_depth);
vpDisplay::displayText(I_depth, 20, 20, "Click when ready.", vpColor::red);
vpDisplay::flush(I_depth);
if (vpDisplay::getClick(I_depth, false)) {
break;
}
}
}
std::vector<int> trackerTypes;
if (use_edges && use_klt)
else if (use_edges)
trackerTypes.push_back(vpMbGenericTracker::EDGE_TRACKER );
else if (use_klt)
trackerTypes.push_back(vpMbGenericTracker::KLT_TRACKER);
if (use_depth)
trackerTypes.push_back(vpMbGenericTracker::DEPTH_DENSE_TRACKER);
vpHomogeneousMatrix depth_M_color = realsense.getTransformation(RS2_STREAM_COLOR, RS2_STREAM_DEPTH);
std::map<std::string, vpHomogeneousMatrix> mapOfCameraTransformations;
std::map<std::string, const vpImage<unsigned char> *> mapOfImages;
std::map<std::string, std::string> mapOfInitFiles;
std::map<std::string, const std::vector<vpColVector> *> mapOfPointclouds;
std::map<std::string, unsigned int> mapOfWidths, mapOfHeights;
std::map<std::string, vpHomogeneousMatrix> mapOfCameraPoses;
std::vector<vpColVector> pointcloud;
vpMbGenericTracker tracker(trackerTypes);
if ((use_edges || use_klt) && use_depth) {
tracker.loadConfigFile(config_color, config_depth);
tracker.loadModel(model_color, model_depth);
std::cout << "Sensor internal depth_M_color: \n" << depth_M_color << std::endl;
mapOfCameraTransformations["Camera2"] = depth_M_color;
tracker.setCameraTransformationMatrix(mapOfCameraTransformations);
mapOfImages["Camera1"] = &I_gray;
mapOfImages["Camera2"] = &I_depth;
mapOfInitFiles["Camera1"] = init_file;
tracker.setCameraParameters(cam_color, cam_depth);
}
else if (use_edges || use_klt) {
tracker.loadConfigFile(config_color);
tracker.loadModel(model_color);
tracker.setCameraParameters(cam_color);
}
else if (use_depth) {
tracker.loadConfigFile(config_depth);
tracker.loadModel(model_depth);
tracker.setCameraParameters(cam_depth);
}
tracker.setDisplayFeatures(true);
tracker.setOgreVisibilityTest(use_ogre);
tracker.setScanLineVisibilityTest(use_scanline);
tracker.setProjectionErrorDisplay(display_projection_error);
#if (defined(VISP_HAVE_OPENCV_NONFREE) || defined(VISP_HAVE_OPENCV_XFEATURES2D))
std::string detectorName = "SIFT";
std::string extractorName = "SIFT";
std::string matcherName = "BruteForce";
#else
std::string detectorName = "FAST";
std::string extractorName = "ORB";
std::string matcherName = "BruteForce-Hamming";
#endif
vpKeyPoint keypoint;
if (learn || auto_init) {
keypoint.setDetector(detectorName);
keypoint.setExtractor(extractorName);
keypoint.setMatcher(matcherName);
#if !(defined(VISP_HAVE_OPENCV_NONFREE) || defined(VISP_HAVE_OPENCV_XFEATURES2D))
# if (VISP_HAVE_OPENCV_VERSION < 0x030000)
keypoint.setDetectorParameter("ORB", "nLevels", 1);
# else
cv::Ptr<cv::ORB> orb_detector = keypoint.getDetector("ORB").dynamicCast<cv::ORB>();
if (orb_detector) {
orb_detector->setNLevels(1);
}
# endif
#endif
}
if (auto_init) {
if (!vpIoTools::checkFilename(learning_data)) {
std::cout << "Cannot enable auto detection. Learning file \"" << learning_data << "\" doesn't exist" << std::endl;
return EXIT_FAILURE;
}
keypoint.loadLearningData(learning_data, true);
} else {
if ((use_edges || use_klt) && use_depth)
tracker.initClick(mapOfImages, mapOfInitFiles, true);
else if (use_edges || use_klt)
tracker.initClick(I_gray, init_file, true);
else if (use_depth)
tracker.initClick(I_depth, init_file, true);
if (learn)
}
bool run_auto_init = false;
if (auto_init) {
run_auto_init = true;
}
std::vector<double> times_vec;
try {
//To be able to display keypoints matching with test-detection-rs2
int learn_id = 1;
bool quit = false;
bool learn_position = false;
double loop_t = 0;
while (!quit) {
double t = vpTime::measureTimeMs();
bool tracking_failed = false;
// Acquire images and update tracker input data
realsense.acquire((unsigned char *) I_color.bitmap, (unsigned char *) I_depth_raw.bitmap, &pointcloud, NULL, NULL);
if (use_edges || use_klt || run_auto_init) {
vpImageConvert::convert(I_color, I_gray);
}
if (use_depth) {
vpImageConvert::createDepthHistogram(I_depth_raw, I_depth);
}
if ((use_edges || use_klt) && use_depth) {
mapOfImages["Camera1"] = &I_gray;
mapOfPointclouds["Camera2"] = &pointcloud;
mapOfWidths["Camera2"] = width;
mapOfHeights["Camera2"] = height;
} else if (use_edges || use_klt) {
mapOfImages["Camera"] = &I_gray;
} else if (use_depth) {
mapOfPointclouds["Camera"] = &pointcloud;
mapOfWidths["Camera"] = width;
mapOfHeights["Camera"] = height;
}
// Run auto initialization from learned data
if (run_auto_init) {
if (keypoint.matchPoint(I_gray, cam_color, cMo)) {
std::cout << "Auto init succeed" << std::endl;
if ((use_edges || use_klt) && use_depth) {
mapOfCameraPoses["Camera1"] = cMo;
mapOfCameraPoses["Camera2"] = depth_M_color *cMo;
tracker.initFromPose(mapOfImages, mapOfCameraPoses);
} else if (use_edges || use_klt) {
tracker.initFromPose(I_gray, cMo);
} else if (use_depth) {
tracker.initFromPose(I_depth, depth_M_color*cMo);
}
} else {
if (use_edges || use_klt) {
}
if (use_depth) {
vpDisplay::flush(I_depth);
}
continue;
}
}
// Run the tracker
try {
if (run_auto_init) {
// Turn display features off just after auto init to not display wrong moving-edge if the tracker fails
tracker.setDisplayFeatures(false);
run_auto_init = false;
}
if ((use_edges || use_klt) && use_depth) {
tracker.track(mapOfImages, mapOfPointclouds, mapOfWidths, mapOfHeights);
} else if (use_edges || use_klt) {
tracker.track(I_gray);
} else if (use_depth) {
tracker.track(mapOfImages, mapOfPointclouds, mapOfWidths, mapOfHeights);
}
} catch (const vpException &e) {
std::cout << "Tracker exception: " << e.getStringMessage() << std::endl;
tracking_failed = true;
if (auto_init) {
std::cout << "Tracker needs to restart (tracking exception)" << std::endl;
run_auto_init = true;
}
}
// Get object pose
cMo = tracker.getPose();
// Check tracking errors
double proj_error = 0;
// Check tracking errors
proj_error = tracker.getProjectionError();
}
else {
proj_error = tracker.computeCurrentProjectionError(I_gray, cMo, cam_color);
}
if (auto_init && proj_error > proj_error_threshold) {
std::cout << "Tracker needs to restart (projection error detected: " << proj_error << ")" << std::endl;
run_auto_init = true;
tracking_failed = true;
}
// Display tracking results
if (!tracking_failed) {
// Turn display features on
tracker.setDisplayFeatures(true);
if ((use_edges || use_klt) && use_depth) {
tracker.display(I_gray, I_depth, cMo, depth_M_color*cMo, cam_color, cam_depth, vpColor::red, 3);
vpDisplay::displayFrame(I_gray, cMo, cam_color, 0.05, vpColor::none, 3);
vpDisplay::displayFrame(I_depth, depth_M_color*cMo, cam_depth, 0.05, vpColor::none, 3);
} else if (use_edges || use_klt) {
tracker.display(I_gray, cMo, cam_color, vpColor::red, 3);
vpDisplay::displayFrame(I_gray, cMo, cam_color, 0.05, vpColor::none, 3);
} else if (use_depth) {
tracker.display(I_depth, cMo, cam_depth, vpColor::red, 3);
vpDisplay::displayFrame(I_depth, cMo, cam_depth, 0.05, vpColor::none, 3);
}
if (use_edges || use_klt) {
std::stringstream ss;
ss << "Nb features: " << tracker.getError().getRows();
vpDisplay::displayText(I_gray, 20, I_gray.getWidth() - 150, ss.str(), vpColor::red);
} else if (use_depth) {
std::stringstream ss;
ss << "Nb features: " << tracker.getError().getRows();
vpDisplay::displayText(I_depth, 20, I_depth.getWidth() - 150, ss.str(), vpColor::red);
}
}
std::stringstream ss;
ss << "Loop time: " << loop_t << " ms";
if (use_edges || use_klt) {
vpDisplay::displayText(I_gray, 20, 20, ss.str(), vpColor::red);
if (learn)
vpDisplay::displayText(I_gray, 35, 20, "Left click: learn Right click: quit", vpColor::red);
else if (auto_init)
vpDisplay::displayText(I_gray, 35, 20, "Left click: auto_init Right click: quit", vpColor::red);
else
vpDisplay::displayText(I_gray, 35, 20, "Right click: quit", vpColor::red);
if (vpDisplay::getClick(I_gray, button, false)) {
if (button == vpMouseButton::button3) {
quit = true;
} else if (button == vpMouseButton::button1 && learn) {
learn_position = true;
} else if (button == vpMouseButton::button1 && auto_init && !learn) {
run_auto_init = true;
}
}
}
if (use_depth) {
vpDisplay::displayText(I_depth, 20, 20, ss.str(), vpColor::red);
vpDisplay::displayText(I_depth, 40, 20, "Click to quit", vpColor::red);
vpDisplay::flush(I_depth);
if (vpDisplay::getClick(I_depth, false)) {
quit = true;
}
}
if (learn_position) {
// Detect keypoints on the current image
std::vector<cv::KeyPoint> trainKeyPoints;
keypoint.detect(I_gray, trainKeyPoints);
// Keep only keypoints on the cube
std::vector<vpPolygon> polygons;
std::vector<std::vector<vpPoint> > roisPt;
std::pair<std::vector<vpPolygon>, std::vector<std::vector<vpPoint> > > pair = tracker.getPolygonFaces();
polygons = pair.first;
roisPt = pair.second;
// Compute the 3D coordinates
std::vector<cv::Point3f> points3f;
vpKeyPoint::compute3DForPointsInPolygons(cMo, cam_color, trainKeyPoints, polygons, roisPt, points3f);
// Build the reference keypoints
keypoint.buildReference(I_gray, trainKeyPoints, points3f, true, learn_id++);
// Display learned data
for (std::vector<cv::KeyPoint>::const_iterator it = trainKeyPoints.begin(); it != trainKeyPoints.end(); ++it) {
vpDisplay::displayCross(I_gray, (int)it->pt.y, (int)it->pt.x, 10, vpColor::yellow, 3);
}
learn_position = false;
std::cout << "Data learned" << std::endl;
}
loop_t = vpTime::measureTimeMs() - t;
times_vec.push_back(loop_t);
}
if (learn) {
std::cout << "Save learning file: " << learning_data << std::endl;
keypoint.saveLearningData(learning_data, true, true);
}
} catch (const vpException &e) {
std::cout << "Catch an exception: " << e.what() << std::endl;
}
if (!times_vec.empty()) {
std::cout << "\nProcessing time, Mean: " << vpMath::getMean(times_vec) << " ms ; Median: " << vpMath::getMedian(times_vec)
<< " ; Std: " << vpMath::getStdev(times_vec) << " ms" << std::endl;
}
return EXIT_SUCCESS;
}
#elif defined(VISP_HAVE_REALSENSE2)
int main() {
std::cout << "Install OpenCV 3rd party, configure and build ViSP again to use this example" << std::endl;
return 0;
}
#else
int main() {
std::cout << "Install librealsense2 3rd party, configure and build ViSP again to use this example" << std::endl;
return 0;
}
#endif