Visual Servoing Platform  version 3.2.0 under development (2019-01-22)
testColVector.cpp

Test some vpColVector functionalities.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2019 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Test some vpColVector functionalities.
*
* Authors:
* Eric Marchand
*
*****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <visp3/core/vpColVector.h>
#include <visp3/core/vpGaussRand.h>
#include <visp3/core/vpMath.h>
namespace
{
bool test(const std::string &s, const vpColVector &v, const std::vector<double> &bench)
{
static unsigned int cpt = 0;
std::cout << "** Test " << ++cpt << std::endl;
std::cout << s << "(" << v.getRows() << "," << v.getCols() << ") = [" << v.t() << "]^T" << std::endl;
if (bench.size() != v.size()) {
std::cout << "Test fails: bad size wrt bench" << std::endl;
return false;
}
for (unsigned int i = 0; i < v.size(); i++) {
if (std::fabs(v[i] - bench[i]) > std::fabs(v[i]) * std::numeric_limits<double>::epsilon()) {
std::cout << "Test fails: bad content" << std::endl;
return false;
}
}
return true;
}
double computeRegularSum(const vpColVector &v)
{
double sum = 0.0;
for (unsigned int i = 0; i < v.getRows(); i++) {
sum += v[i];
}
return sum;
}
double computeRegularSumSquare(const vpColVector &v)
{
double sum_square = 0.0;
for (unsigned int i = 0; i < v.getRows(); i++) {
sum_square += v[i] * v[i];
}
return sum_square;
}
double computeRegularStdev(const vpColVector &v)
{
double mean_value = computeRegularSum(v) / v.getRows();
double sum_squared_diff = 0.0;
for (unsigned int i = 0; i < v.size(); i++) {
sum_squared_diff += (v[i] - mean_value) * (v[i] - mean_value);
}
double divisor = (double)v.size();
return std::sqrt(sum_squared_diff / divisor);
}
double getRandomValues(const double min, const double max)
{
return (max - min) * ((double)rand() / (double)RAND_MAX) + min;
}
}
int main()
{
{
vpColVector v1(7, 0.1), v2;
if (v1 == v2) {
std::cerr << "Issue with vpColVector comparison operator." << std::endl;
return EXIT_FAILURE;
}
v2 = v1;
if (v1 != v2) {
std::cerr << "Issue with vpColVector comparison operator." << std::endl;
return EXIT_FAILURE;
}
v2[3] = 0.2;
if (v1 == v2) {
std::cerr << "Issue with vpColVector comparison operator." << std::endl;
return EXIT_FAILURE;
}
}
{
v.resize(4);
v = 3;
std::vector<double> bench1(4, 3);
if (test("v", v, bench1) == false)
return EXIT_FAILURE;
std::vector<double> bench2(4, 3. / 6);
v.normalize();
if (test("v", v, bench2) == false)
return EXIT_FAILURE;
v.resize(5, 1, true);
std::vector<double> bench3(5, 0);
if (test("v", v, bench3) == false)
return EXIT_FAILURE;
}
{
std::vector<double> bench1(4);
for (unsigned int i = 0; i < v.size(); i++) {
v[i] = (double)i;
bench1[i] = (double)i;
}
if (test("v", v, bench1) == false)
return EXIT_FAILURE;
w.init(v, 0, 2);
std::vector<double> bench2;
bench2.push_back(0);
bench2.push_back(1);
if (test("w", w, bench2) == false)
return EXIT_FAILURE;
std::vector<double> bench3;
bench3.push_back(1);
bench3.push_back(2);
bench3.push_back(3);
for (size_t i = 0; i < 4; i++)
r1.stack((double)i);
vpColVector r2 = r1.extract(1, 3);
if (test("r2", r2, bench3) == false)
return EXIT_FAILURE;
}
{
vpMatrix M(4, 1);
std::vector<double> bench(4);
for (unsigned int i = 0; i < M.getRows(); i++) {
M[i][0] = i;
bench[i] = i;
}
if (test("M", M, bench) == false)
return EXIT_FAILURE;
v = M;
if (test("v", v, bench) == false)
return EXIT_FAILURE;
if (test("w", w, bench) == false)
return EXIT_FAILURE;
vpColVector z1(bench);
if (test("z1", z1, bench) == false)
return EXIT_FAILURE;
vpColVector z2 = bench;
if (test("z2", z2, bench) == false)
return EXIT_FAILURE;
}
{
v[0] = 1;
v[1] = 2;
v[2] = 3;
std::vector<double> bench1;
bench1.push_back(3);
bench1.push_back(6);
bench1.push_back(9);
vpColVector w = v * 3;
// v is unchanged
// w is now equal to : [3 6 9]
if (test("w", w, bench1) == false)
return EXIT_FAILURE;
if (test("x", x, bench1) == false)
return EXIT_FAILURE;
std::vector<float> bench2;
bench2.push_back(3);
bench2.push_back(6);
bench2.push_back(9);
vpColVector y1(bench2);
if (test("y1", y1, bench1) == false)
return EXIT_FAILURE;
vpColVector y2 = bench2;
if (test("y2", y2, bench1) == false)
return EXIT_FAILURE;
}
{
vpColVector r1(3, 1);
vpColVector r2 = -r1;
std::vector<double> bench(3, -1);
// v contains [-1 -1 -1]
if (test("r2", r2, bench) == false)
return EXIT_FAILURE;
r2.stack(-2);
bench.push_back(-2);
if (test("r2", r2, bench) == false)
return EXIT_FAILURE;
std::vector<double> bench3(7, 1);
bench3[3] = bench3[4] = bench3[5] = -1;
bench3[6] = -2;
if (test("r3", r3, bench3) == false)
return EXIT_FAILURE;
r1.stack(r2);
if (test("r1", r1, bench3) == false)
return EXIT_FAILURE;
}
{
vpColVector r1(3, 2);
vpColVector r2(3, 4);
std::cout << "test r1: " << r1 << std::endl;
std::cout << "test r2: " << r2 << std::endl;
vpColVector r = r1 + r2;
std::cout << "test r1+r2: " << r1 + r2 << std::endl;
std::cout << "test r: " << r << std::endl;
std::vector<double> bench(3, 6);
if (test("r", r, bench) == false)
return EXIT_FAILURE;
r1 += r2;
if (test("r1", r1, bench) == false)
return EXIT_FAILURE;
}
{
vpColVector r1(3, 2);
vpColVector r2(3, 4);
vpColVector r = r1 - r2;
std::vector<double> bench(3, -2);
if (test("r", r, bench) == false)
return EXIT_FAILURE;
r1 -= r2;
if (test("r1", r1, bench) == false)
return EXIT_FAILURE;
}
{
vpColVector r(5, 1);
r.clear();
r.resize(5);
r = 5;
std::vector<double> bench(5, 5);
if (test("r", r, bench) == false)
return EXIT_FAILURE;
}
{
// Test mean, median and standard deviation against Matlab with rng(0) and
// rand(10,1)*10
vpColVector r(10);
r[0] = 8.1472;
r[1] = 9.0579;
r[2] = 1.2699;
r[3] = 9.1338;
r[4] = 6.3236;
r[5] = 0.9754;
r[6] = 2.7850;
r[7] = 5.4688;
r[8] = 9.5751;
r[9] = 9.6489;
std::cout << "** Test mean" << std::endl;
double res = vpColVector::mean(r);
if (!vpMath::equal(res, 6.2386, 0.001)) {
std::cout << "Test fails: bad mean " << res << std::endl;
return EXIT_FAILURE;
}
std::cout << "** Test stdev" << std::endl;
if (!vpMath::equal(res, 3.2810, 0.001)) {
std::cout << "Test fails: bad stdev " << res << std::endl;
return EXIT_FAILURE;
}
std::cout << "** Test stdev(bessel)" << std::endl;
res = vpColVector::stdev(r, true);
if (!vpMath::equal(res, 3.4585, 0.001)) {
std::cout << "Test fails: bad stdev(bessel) " << res << std::endl;
return EXIT_FAILURE;
}
std::cout << "** Test median" << std::endl;
if (!vpMath::equal(res, 7.2354, 0.001)) {
std::cout << "Test fails: bad median " << res << std::endl;
return EXIT_FAILURE;
}
// Test median with odd number of elements
std::cout << "** Test median (odd)" << std::endl;
r.stack(1.5761);
if (!vpMath::equal(res, 6.3236, 0.001)) {
std::cout << "Test fails: bad median (odd) " << res << std::endl;
return EXIT_FAILURE;
}
std::cout << "r: [" << r << "]^T" << std::endl;
r.print(std::cout, 8, "r");
}
// Test sum, sumSquare, stdev
{
srand(0);
vpGaussRand noise(10.0, 0.0);
int nbIterations = 1000;
unsigned int size = 117;
vpColVector v(size);
for (unsigned int cpt = 0; cpt < v.getRows(); cpt++) {
v[cpt] = rand() % 1000 + noise();
}
std::cout << "\nv.getRows()=" << v.getRows() << std::endl;
double regular_sum = 0.0;
double t_regular = vpTime::measureTimeMs();
for (int iteration = 0; iteration < nbIterations; iteration++) {
regular_sum += computeRegularSum(v);
}
t_regular = vpTime::measureTimeMs() - t_regular;
double sse_sum = 0.0;
double t_sse = vpTime::measureTimeMs();
for (int iteration = 0; iteration < nbIterations; iteration++) {
sse_sum += v.sum();
}
t_sse = vpTime::measureTimeMs() - t_sse;
std::cout << "\nregular_sum=" << regular_sum << " ; sse_sum=" << sse_sum << std::endl;
std::cout << "t_regular=" << t_regular << " ms ; t_sse=" << t_sse << " ms" << std::endl;
std::cout << "Speed-up: " << (t_regular / t_sse) << "X" << std::endl;
if (!vpMath::equal(regular_sum, sse_sum, std::numeric_limits<double>::epsilon())) {
std::cerr << "Problem when computing v.sum()!" << std::endl;
return EXIT_FAILURE;
}
double regular_sumSquare = 0.0;
t_regular = vpTime::measureTimeMs();
for (int iteration = 0; iteration < nbIterations; iteration++) {
regular_sumSquare += computeRegularSumSquare(v);
}
t_regular = vpTime::measureTimeMs() - t_regular;
double sse_sumSquare = 0.0;
for (int iteration = 0; iteration < nbIterations; iteration++) {
sse_sumSquare += v.sumSquare();
}
t_sse = vpTime::measureTimeMs() - t_sse;
std::cout << "\nregular_sumSquare=" << regular_sumSquare << " ; sse_sumSquare=" << sse_sumSquare << std::endl;
std::cout << "t_regular=" << t_regular << " ms ; t_sse=" << t_sse << " ms" << std::endl;
std::cout << "Speed-up: " << (t_regular / t_sse) << "X" << std::endl;
if (!vpMath::equal(regular_sumSquare, sse_sumSquare, std::numeric_limits<double>::epsilon())) {
std::cerr << "Problem when computing v.sumSquare()!" << std::endl;
return EXIT_FAILURE;
}
double regular_stdev = 0.0;
t_regular = vpTime::measureTimeMs();
for (int iteration = 0; iteration < nbIterations; iteration++) {
regular_stdev += computeRegularStdev(v);
}
t_regular = vpTime::measureTimeMs() - t_regular;
double sse_stdev = 0.0;
for (int iteration = 0; iteration < nbIterations; iteration++) {
sse_stdev += vpColVector::stdev(v, false);
}
t_sse = vpTime::measureTimeMs() - t_sse;
std::cout << "\nregular_stdev=" << regular_stdev << " ; sse_stdev=" << sse_stdev << std::endl;
std::cout << "t_regular=" << t_regular << " ms ; t_sse=" << t_sse << " ms" << std::endl;
std::cout << "Speed-up: " << (t_regular / t_sse) << "X" << std::endl;
if (!vpMath::equal(regular_stdev, sse_stdev, std::numeric_limits<double>::epsilon())) {
std::cerr << "Problem when computing vpColVector::stdev()!" << std::endl;
return EXIT_FAILURE;
}
}
{
// Test insert with big vector
const unsigned int nb = 1000;
const unsigned int size = 10000;
std::vector<vpColVector> vec(nb);
for (size_t i = 0; i < nb; i++) {
vpColVector v(size);
for (unsigned int j = 0; j < size; j++) {
v[j] = getRandomValues(-100.0, 100.0);
}
vec[i] = v;
}
vpColVector v_big(nb * size);
double t = vpTime::measureTimeMs();
for (unsigned int i = 0; i < nb; i++) {
v_big.insert(i * size, vec[(size_t)i]);
}
std::cout << "\nBig insert: " << t << " ms" << std::endl;
for (unsigned int i = 0; i < nb; i++) {
for (unsigned int j = 0; j < size; j++) {
if (!vpMath::equal(v_big[i * size + j], vec[(size_t)i][j], std::numeric_limits<double>::epsilon())) {
std::cerr << "Problem in vpColVector insert()!" << std::endl;
return EXIT_FAILURE;
}
}
}
// Try to insert empty vpColVector
vpColVector v1(2), v2, v3;
v1.insert(0, v2);
v3.insert(0, v2);
std::cout << "Insert empty vectors:" << std::endl;
std::cout << "v1: " << v1.t() << std::endl;
std::cout << "v2: " << v2.t() << std::endl;
std::cout << "v3: " << v3.t() << std::endl;
}
{
std::cout << "** Test conversion to/from std::vector" << std::endl;
std::vector<double> std_vector(5);
for (size_t i = 0; i < std_vector.size(); i++) {
std_vector[i] = (double) i;
}
vpColVector v(std_vector);
if (test("v", v, std_vector) == false)
return EXIT_FAILURE;
std_vector.clear();
std_vector = v.toStdVector();
if (test("v", v, std_vector) == false)
return EXIT_FAILURE;
}
std::cout << "\nAll tests succeed" << std::endl;
return EXIT_SUCCESS;
}