Visual Servoing Platform  version 3.2.0 under development (2019-01-22)
simulateFourPoints2DPolarCamVelocity.cpp
/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2019 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Simulation of a visual servoing with visualization.
*
* Authors:
* Eric Marchand
* Fabien Spindler
*
*****************************************************************************/
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h>
#ifdef VISP_HAVE_COIN3D_AND_GUI
#include <visp3/ar/vpSimulator.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpTime.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePointPolar.h>
#include <visp3/vs/vpServo.h>
#define GETOPTARGS "di:h"
#define SAVE 0
void usage(const char *name, const char *badparam, std::string ipath)
{
fprintf(stdout, "\n\
Simulation Servo 4points.\n\
\n\
SYNOPSIS\n\
%s [-i <input image path>] [-d] [-h]\n", name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-i <input image path> %s\n\
Set image input path.\n\
From this path read \"iv/4points.iv\"\n\
cad model.\n\
Setting the VISP_INPUT_IMAGE_PATH environment\n\
variable produces the same behaviour than using\n\
this option.\n\
\n\
-d \n\
Disable the image display. This can be useful \n\
for automatic tests using crontab under Unix or \n\
using the task manager under Windows.\n\
\n\
-h\n\
Print the help.\n\n", ipath.c_str());
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, std::string &ipath, bool &display)
{
const char *optarg;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg)) > 1) {
switch (c) {
case 'i':
ipath = optarg;
break;
case 'd':
display = false;
break;
case 'h':
usage(argv[0], NULL, ipath);
return false;
break;
default:
usage(argv[0], optarg, ipath);
return false;
break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL, ipath);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg << std::endl << std::endl;
return false;
}
return true;
}
static void *mainLoop(void *_simu)
{
vpSimulator *simu = static_cast<vpSimulator *>(_simu);
vpServo task;
float sampling_time = 0.040f; // Sampling period in second
robot.setSamplingTime(sampling_time);
// Sets the initial camera location
vcMo[0] = 0.;
vcMo[1] = 0.;
vcMo[2] = 3;
vcMo[3] = 0;
vcMo[4] = vpMath::rad(0);
vcMo[5] = vpMath::rad(90);
vpHomogeneousMatrix wMo; // Set to identity
vpHomogeneousMatrix wMc; // Camera location in world frame
wMc = wMo * cMo.inverse();
robot.setPosition(wMc);
simu->setCameraPosition(cMo);
simu->getCameraPosition(cMo);
wMc = wMo * cMo.inverse();
robot.setPosition(wMc);
// Sets the point coordinates in the world frame
vpPoint point[4];
point[0].setWorldCoordinates(-0.1, -0.1, 0);
point[1].setWorldCoordinates(0.1, -0.1, 0);
point[2].setWorldCoordinates(0.1, 0.1, 0);
point[3].setWorldCoordinates(-0.1, 0.1, 0);
// Project : computes the point coordinates in the camera frame and its 2D
// coordinates
for (int i = 0; i < 4; i++) {
point[i].changeFrame(cMo); // Compute point coordinates in the camera frame
point[i].project(); // Compute desired point doordinates in the camera frame
}
// Sets the desired position of the point
for (int i = 0; i < 4; i++)
point[i]); // retrieve x,y and Z of the
// vpPoint structure to build the
// polar coordinates
std::cout << "s: \n";
for (int i = 0; i < 4; i++) {
printf("[%d] rho %f theta %f Z %f\n", i, p[i].get_rho(), p[i].get_theta(), p[i].get_Z());
}
// Sets the desired position of the point
vcMo[0] = 0;
vcMo[1] = 0;
vcMo[2] = 1;
vcMo[3] = vpMath::rad(0);
vcMo[4] = vpMath::rad(0);
vcMo[5] = vpMath::rad(0);
vpHomogeneousMatrix cMod(vcMo);
vpPoint pointd[4]; // Desired position of the points
pointd[0].setWorldCoordinates(-0.1, -0.1, 0);
pointd[1].setWorldCoordinates(0.1, -0.1, 0);
pointd[2].setWorldCoordinates(0.1, 0.1, 0);
pointd[3].setWorldCoordinates(-0.1, 0.1, 0);
for (int i = 0; i < 4; i++) {
pointd[i].changeFrame(cMod); // Compute desired point doordinates in the camera frame
pointd[i].project(); // Compute desired point doordinates in the camera frame
vpFeatureBuilder::create(pd[i], pointd[i]); // retrieve x,y and Z of the
// vpPoint structure to build
// the polar coordinates
}
std::cout << "s*: \n";
for (int i = 0; i < 4; i++) {
printf("[%d] rho %f theta %f Z %f\n", i, pd[i].get_rho(), pd[i].get_theta(), pd[i].get_Z());
}
// Define the task
// We want an eye-in-hand control law
// Articular velocity are computed
// Set the position of the camera in the end-effector frame
task.set_cVe(cVe);
// Set the Jacobian (expressed in the end-effector frame)
vpMatrix eJe;
robot.get_eJe(eJe);
task.set_eJe(eJe);
// We want to see a point on a point
for (int i = 0; i < 4; i++)
task.addFeature(p[i], pd[i]);
// Set the gain
task.setLambda(1.0);
// Display task information
task.print();
vpTime::wait(1000); // Sleep 1s
unsigned int iter = 0;
// Visual servo loop
while (iter++ < 200) {
double t = vpTime::measureTimeMs();
robot.get_eJe(eJe);
task.set_eJe(eJe);
wMc = robot.getPosition();
cMo = wMc.inverse() * wMo;
for (int i = 0; i < 4; i++) {
point[i].track(cMo);
vpFeatureBuilder::create(p[i], point[i]);
}
simu->setCameraPosition(cMo);
if (SAVE == 1) {
char name[FILENAME_MAX];
sprintf(name, "/tmp/image.%04u.external.png", iter);
std::cout << name << std::endl;
simu->write(name);
sprintf(name, "/tmp/image.%04u.internal.png", iter);
simu->write(name);
}
vpTime::wait(t, sampling_time * 1000); // Wait 40 ms
}
// Display task information
task.print();
task.kill();
std::cout << "cMo:\n" << cMo << std::endl;
vpPoseVector pose(cMo);
std::cout << "final pose:\n" << pose.t() << std::endl;
void *a = NULL;
return a;
}
int main(int argc, const char **argv)
{
try {
std::string env_ipath;
std::string opt_ipath;
std::string ipath;
std::string filename;
bool opt_display = true;
// Get the visp-images-data package path or VISP_INPUT_IMAGE_PATH
// environment variable value
// Set the default input path
if (!env_ipath.empty())
ipath = env_ipath;
// Read the command line options
if (getOptions(argc, argv, opt_ipath, opt_display) == false) {
exit(-1);
}
// Get the option values
if (!opt_ipath.empty())
ipath = opt_ipath;
// Compare ipath and env_ipath. If they differ, we take into account
// the input path comming from the command line option
if (!opt_ipath.empty() && !env_ipath.empty()) {
if (ipath != env_ipath) {
std::cout << std::endl << "WARNING: " << std::endl;
std::cout << " Since -i <visp image path=" << ipath << "> "
<< " is different from VISP_IMAGE_PATH=" << env_ipath << std::endl
<< " we skip the environment variable." << std::endl;
}
}
// Test if an input path is set
if (opt_ipath.empty() && env_ipath.empty()) {
usage(argv[0], NULL, ipath);
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Use -i <visp image path> option or set VISP_INPUT_IMAGE_PATH " << std::endl
<< " environment variable to specify the location of the " << std::endl
<< " image path where test images are located." << std::endl
<< std::endl;
exit(-1);
}
fMo[2][3] = 0;
if (opt_display) {
simu.initInternalViewer(300, 300);
simu.initExternalViewer(300, 300);
vpTime::wait(1000);
simu.setZoomFactor(1.0f);
// Load the cad model
filename = vpIoTools::createFilePath(ipath, "iv/4points.iv");
simu.load(filename.c_str());
simu.initApplication(&mainLoop);
simu.mainLoop();
}
return EXIT_SUCCESS;
} catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have Coin3D and SoQT or SoWin or SoXt functionalities enabled..." << std::endl;
std::cout << "Tip:" << std::endl;
std::cout << "- Install Coin3D and SoQT or SoWin or SoXt, configure ViSP again using cmake and build again this example" << std::endl;
return EXIT_SUCCESS;
}
#endif