38 #ifndef __vpKeyPoint_h__ 39 #define __vpKeyPoint_h__ 51 #include <visp3/core/vpConfig.h> 52 #include <visp3/core/vpDisplay.h> 53 #include <visp3/core/vpImageConvert.h> 54 #include <visp3/core/vpPixelMeterConversion.h> 55 #include <visp3/core/vpPlane.h> 56 #include <visp3/core/vpPoint.h> 57 #include <visp3/vision/vpBasicKeyPoint.h> 58 #include <visp3/vision/vpPose.h> 59 #ifdef VISP_HAVE_MODULE_IO 60 #include <visp3/io/vpImageIo.h> 62 #include <visp3/core/vpConvert.h> 63 #include <visp3/core/vpCylinder.h> 64 #include <visp3/core/vpMeterPixelConversion.h> 65 #include <visp3/core/vpPolygon.h> 66 #include <visp3/vision/vpXmlConfigParserKeyPoint.h> 69 #if (VISP_HAVE_OPENCV_VERSION >= 0x020101) 71 #include <opencv2/calib3d/calib3d.hpp> 72 #include <opencv2/features2d/features2d.hpp> 73 #include <opencv2/imgproc/imgproc.hpp> 75 #if defined(VISP_HAVE_OPENCV_XFEATURES2D) // OpenCV >= 3.0.0 76 #include <opencv2/xfeatures2d.hpp> 77 #elif defined(VISP_HAVE_OPENCV_NONFREE) && (VISP_HAVE_OPENCV_VERSION >= 0x020400) && \ 78 (VISP_HAVE_OPENCV_VERSION < 0x030000) 79 #include <opencv2/nonfree/nonfree.hpp> 83 #include <libxml/xmlwriter.h> 229 constantFactorDistanceThreshold,
231 stdDistanceThreshold,
233 ratioDistanceThreshold,
236 stdAndRatioDistanceThreshold,
260 #if (VISP_HAVE_OPENCV_VERSION >= 0x020403) 267 #if (VISP_HAVE_OPENCV_VERSION < 0x030000) || (defined(VISP_HAVE_OPENCV_XFEATURES2D)) 270 #if defined(VISP_HAVE_OPENCV_NONFREE) || defined(VISP_HAVE_OPENCV_XFEATURES2D) 274 #if (VISP_HAVE_OPENCV_VERSION >= 0x030000) 279 #if (VISP_HAVE_OPENCV_VERSION >= 0x030100) && defined(VISP_HAVE_OPENCV_XFEATURES2D) 288 #if (VISP_HAVE_OPENCV_VERSION >= 0x020403) 291 #if (VISP_HAVE_OPENCV_VERSION < 0x030000) || (defined(VISP_HAVE_OPENCV_XFEATURES2D)) 295 #if defined(VISP_HAVE_OPENCV_NONFREE) || defined(VISP_HAVE_OPENCV_XFEATURES2D) 299 #if (VISP_HAVE_OPENCV_VERSION >= 0x030000) 302 #if defined(VISP_HAVE_OPENCV_XFEATURES2D) 307 #if (VISP_HAVE_OPENCV_VERSION >= 0x030200) && defined(VISP_HAVE_OPENCV_XFEATURES2D) 309 DESCRIPTOR_BoostDesc,
316 const std::string &matcherName,
const vpFilterMatchingType &filterType = ratioDistanceThreshold);
317 vpKeyPoint(
const std::string &detectorName =
"ORB",
const std::string &extractorName =
"ORB",
318 const std::string &matcherName =
"BruteForce-Hamming",
320 vpKeyPoint(
const std::vector<std::string> &detectorNames,
const std::vector<std::string> &extractorNames,
321 const std::string &matcherName =
"BruteForce",
326 const unsigned int width);
330 std::vector<cv::Point3f> &points3f,
const bool append =
false,
const int class_id = -1);
332 const cv::Mat &trainDescriptors,
const std::vector<cv::Point3f> &points3f,
333 const bool append =
false,
const int class_id = -1);
335 static void compute3D(
const cv::KeyPoint &candidate,
const std::vector<vpPoint> &roi,
const vpCameraParameters &cam,
342 std::vector<cv::KeyPoint> &candidates,
343 const std::vector<vpPolygon> &polygons,
344 const std::vector<std::vector<vpPoint> > &roisPt,
345 std::vector<cv::Point3f> &points, cv::Mat *descriptors = NULL);
348 std::vector<vpImagePoint> &candidates,
349 const std::vector<vpPolygon> &polygons,
350 const std::vector<std::vector<vpPoint> > &roisPt,
351 std::vector<vpPoint> &points, cv::Mat *descriptors = NULL);
355 std::vector<cv::KeyPoint> &candidates,
const std::vector<vpCylinder> &cylinders,
356 const std::vector<std::vector<std::vector<vpImagePoint> > > &vectorOfCylinderRois,
357 std::vector<cv::Point3f> &points, cv::Mat *descriptors = NULL);
361 std::vector<vpImagePoint> &candidates,
const std::vector<vpCylinder> &cylinders,
362 const std::vector<std::vector<std::vector<vpImagePoint> > > &vectorOfCylinderRois,
363 std::vector<vpPoint> &points, cv::Mat *descriptors = NULL);
365 bool computePose(
const std::vector<cv::Point2f> &imagePoints,
const std::vector<cv::Point3f> &objectPoints,
369 bool computePose(
const std::vector<vpPoint> &objectVpPoints,
vpHomogeneousMatrix &cMo, std::vector<vpPoint> &inliers,
372 bool computePose(
const std::vector<vpPoint> &objectVpPoints,
vpHomogeneousMatrix &cMo, std::vector<vpPoint> &inliers,
373 std::vector<unsigned int> &inlierIndex,
double &elapsedTime,
382 void detect(
const cv::Mat &matImg, std::vector<cv::KeyPoint> &keyPoints,
const cv::Mat &mask = cv::Mat());
385 void detect(
const cv::Mat &matImg, std::vector<cv::KeyPoint> &keyPoints,
double &elapsedTime,
386 const cv::Mat &mask = cv::Mat());
388 void detectExtractAffine(
const vpImage<unsigned char> &I, std::vector<std::vector<cv::KeyPoint> > &listOfKeypoints,
389 std::vector<cv::Mat> &listOfDescriptors,
398 const std::vector<vpImagePoint> &ransacInliers = std::vector<vpImagePoint>(),
399 unsigned int crossSize = 3,
unsigned int lineThickness = 1);
402 std::vector<cv::Point3f> *trainPoints = NULL);
403 void extract(
const cv::Mat &matImg, std::vector<cv::KeyPoint> &keyPoints, cv::Mat &descriptors,
404 std::vector<cv::Point3f> *trainPoints = NULL);
406 double &elapsedTime, std::vector<cv::Point3f> *trainPoints = NULL);
407 void extract(
const cv::Mat &matImg, std::vector<cv::KeyPoint> &keyPoints, cv::Mat &descriptors,
double &elapsedTime,
408 std::vector<cv::Point3f> *trainPoints = NULL);
421 if (!m_computeCovariance) {
422 std::cout <<
"Warning : The covariance matrix has not been computed. " 423 "See setCovarianceComputation() to do it." 428 if (m_computeCovariance && !m_useRansacVVS) {
429 std::cout <<
"Warning : The covariance matrix can only be computed " 430 "with a Virtual Visual Servoing approach." 432 <<
"Use setUseRansacVVS(true) to choose to use a pose " 433 "estimation method based on a Virtual Visual Servoing " 439 return m_covarianceMatrix;
458 std::map<vpFeatureDetectorType, std::string>::const_iterator it_name = m_mapOfDetectorNames.find(type);
459 if (it_name == m_mapOfDetectorNames.end()) {
460 std::cerr <<
"Internal problem with the feature type and the " 461 "corresponding name!" 465 std::map<std::string, cv::Ptr<cv::FeatureDetector> >::const_iterator findDetector =
466 m_detectors.find(it_name->second);
467 if (findDetector != m_detectors.end()) {
468 return findDetector->second;
471 std::cerr <<
"Cannot find: " << it_name->second << std::endl;
472 return cv::Ptr<cv::FeatureDetector>();
482 inline cv::Ptr<cv::FeatureDetector>
getDetector(
const std::string &name)
const 484 std::map<std::string, cv::Ptr<cv::FeatureDetector> >::const_iterator findDetector = m_detectors.find(name);
485 if (findDetector != m_detectors.end()) {
486 return findDetector->second;
489 std::cerr <<
"Cannot find: " << name << std::endl;
490 return cv::Ptr<cv::FeatureDetector>();
496 inline std::map<vpFeatureDetectorType, std::string>
getDetectorNames()
const {
return m_mapOfDetectorNames; }
514 std::map<vpFeatureDescriptorType, std::string>::const_iterator it_name = m_mapOfDescriptorNames.find(type);
515 if (it_name == m_mapOfDescriptorNames.end()) {
516 std::cerr <<
"Internal problem with the feature type and the " 517 "corresponding name!" 521 std::map<std::string, cv::Ptr<cv::DescriptorExtractor> >::const_iterator findExtractor =
522 m_extractors.find(it_name->second);
523 if (findExtractor != m_extractors.end()) {
524 return findExtractor->second;
527 std::cerr <<
"Cannot find: " << it_name->second << std::endl;
528 return cv::Ptr<cv::DescriptorExtractor>();
538 inline cv::Ptr<cv::DescriptorExtractor>
getExtractor(
const std::string &name)
const 540 std::map<std::string, cv::Ptr<cv::DescriptorExtractor> >::const_iterator findExtractor = m_extractors.find(name);
541 if (findExtractor != m_extractors.end()) {
542 return findExtractor->second;
545 std::cerr <<
"Cannot find: " << name << std::endl;
546 return cv::Ptr<cv::DescriptorExtractor>();
552 inline std::map<vpFeatureDescriptorType, std::string>
getExtractorNames()
const {
return m_mapOfDescriptorNames; }
573 inline cv::Ptr<cv::DescriptorMatcher>
getMatcher()
const {
return m_matcher; }
581 inline std::vector<cv::DMatch>
getMatches()
const {
return m_filteredMatches; }
592 std::vector<std::pair<cv::KeyPoint, cv::KeyPoint> > matchQueryToTrainKeyPoints(m_filteredMatches.size());
593 for (
size_t i = 0; i < m_filteredMatches.size(); i++) {
594 matchQueryToTrainKeyPoints.push_back(
595 std::pair<cv::KeyPoint, cv::KeyPoint>(m_queryFilteredKeyPoints[(
size_t)m_filteredMatches[i].queryIdx],
596 m_trainKeyPoints[(
size_t)m_filteredMatches[i].trainIdx]));
598 return matchQueryToTrainKeyPoints;
606 inline unsigned int getNbImages()
const {
return static_cast<unsigned int>(m_mapOfImages.size()); }
608 void getObjectPoints(std::vector<cv::Point3f> &objectPoints)
const;
609 void getObjectPoints(std::vector<vpPoint> &objectPoints)
const;
626 void getQueryKeyPoints(std::vector<cv::KeyPoint> &keyPoints)
const;
627 void getQueryKeyPoints(std::vector<vpImagePoint> &keyPoints)
const;
651 void getTrainKeyPoints(std::vector<cv::KeyPoint> &keyPoints)
const;
652 void getTrainKeyPoints(std::vector<vpImagePoint> &keyPoints)
const;
654 void getTrainPoints(std::vector<cv::Point3f> &points)
const;
655 void getTrainPoints(std::vector<vpPoint> &points)
const;
657 void initMatcher(
const std::string &matcherName);
663 #ifdef VISP_HAVE_XML2 664 void loadConfigFile(
const std::string &configFile);
667 void loadLearningData(
const std::string &filename,
const bool binaryMode =
false,
const bool append =
false);
669 void match(
const cv::Mat &trainDescriptors,
const cv::Mat &queryDescriptors, std::vector<cv::DMatch> &matches,
670 double &elapsedTime);
674 const unsigned int width);
684 const bool isPlanarObject =
true, std::vector<vpImagePoint> *imPts1 = NULL,
685 std::vector<vpImagePoint> *imPts2 = NULL,
double *meanDescriptorDistance = NULL,
686 double *detectionScore = NULL,
const vpRect &rectangle =
vpRect());
689 double &error,
double &elapsedTime,
vpRect &boundingBox,
vpImagePoint ¢erOfGravity,
694 void saveLearningData(
const std::string &filename,
const bool binaryMode =
false,
695 const bool saveTrainingImages =
true);
705 m_computeCovariance = flag;
706 if (!m_useRansacVVS) {
707 std::cout <<
"Warning : The covariance matrix can only be computed " 708 "with a Virtual Visual Servoing approach." 710 <<
"Use setUseRansacVVS(true) to choose to use a pose " 711 "estimation method based on a Virtual " 712 "Visual Servoing approach." 731 m_detectorNames.clear();
732 m_detectorNames.push_back(m_mapOfDetectorNames[detectorType]);
734 initDetector(m_mapOfDetectorNames[detectorType]);
744 m_detectorNames.clear();
745 m_detectorNames.push_back(detectorName);
747 initDetector(detectorName);
750 #if (VISP_HAVE_OPENCV_VERSION >= 0x020400 && VISP_HAVE_OPENCV_VERSION < 0x030000) 759 template <
typename T1,
typename T2,
typename T3>
762 if (m_detectors.find(detectorName) != m_detectors.end()) {
763 m_detectors[detectorName]->set(parameterName, value);
774 inline void setDetectors(
const std::vector<std::string> &detectorNames)
776 m_detectorNames.clear();
778 m_detectorNames = detectorNames;
779 initDetectors(m_detectorNames);
789 m_extractorNames.clear();
790 m_extractorNames.push_back(m_mapOfDescriptorNames[extractorType]);
791 m_extractors.clear();
792 initExtractor(m_mapOfDescriptorNames[extractorType]);
803 m_extractorNames.clear();
804 m_extractorNames.push_back(extractorName);
805 m_extractors.clear();
806 initExtractor(extractorName);
809 #if (VISP_HAVE_OPENCV_VERSION >= 0x020400 && VISP_HAVE_OPENCV_VERSION < 0x030000) 818 template <
typename T1,
typename T2,
typename T3>
821 if (m_extractors.find(extractorName) != m_extractors.end()) {
822 m_extractors[extractorName]->set(parameterName, value);
835 m_extractorNames.clear();
836 m_extractorNames = extractorNames;
837 m_extractors.clear();
838 initExtractors(m_extractorNames);
846 inline void setImageFormat(
const vpImageFormatType &imageFormat) { m_imageFormat = imageFormat; }
865 m_matcherName = matcherName;
866 initMatcher(m_matcherName);
886 m_filterType = filterType;
890 if (filterType == ratioDistanceThreshold || filterType == stdAndRatioDistanceThreshold) {
893 #if (VISP_HAVE_OPENCV_VERSION >= 0x020400 && VISP_HAVE_OPENCV_VERSION < 0x030000) 894 if (m_matcher != NULL && m_matcherName ==
"BruteForce") {
897 m_matcher->set(
"crossCheck",
false);
903 #if (VISP_HAVE_OPENCV_VERSION >= 0x020400 && VISP_HAVE_OPENCV_VERSION < 0x030000) 904 if (m_matcher != NULL && m_matcherName ==
"BruteForce") {
907 m_matcher->set(
"crossCheck", m_useBruteForceCrossCheck);
922 m_matchingFactorThreshold = factor;
935 if (ratio > 0.0 && (ratio < 1.0 || std::fabs(ratio - 1.0) < std::numeric_limits<double>::epsilon())) {
936 m_matchingRatioThreshold = ratio;
950 if (percentage > 0.0 &&
951 (percentage < 100.0 || std::fabs(percentage - 100.0) < std::numeric_limits<double>::epsilon())) {
952 m_ransacConsensusPercentage = percentage;
967 m_nbRansacIterations = nbIter;
982 if (reprojectionError > 0.0) {
983 m_ransacReprojectionError = reprojectionError;
986 "threshold must be positive " 987 "as we deal with distance.");
999 m_nbRansacMinInlierCount = minCount;
1013 if (threshold > 0.0) {
1014 m_ransacThreshold = threshold;
1029 #if (VISP_HAVE_OPENCV_VERSION >= 0x020400 && VISP_HAVE_OPENCV_VERSION < 0x030000) 1040 if (m_matcher != NULL && !m_useKnn && m_matcherName ==
"BruteForce") {
1041 m_matcher->set(
"crossCheck", useCrossCheck);
1042 }
else if (m_matcher != NULL && m_useKnn && m_matcherName ==
"BruteForce") {
1043 std::cout <<
"Warning, you try to set the crossCheck parameter with a " 1044 "BruteForce matcher but knn is enabled";
1045 std::cout <<
" (the filtering method uses a ratio constraint)" << std::endl;
1058 m_useMatchTrainToQuery = useMatchTrainToQuery;
1090 bool m_computeCovariance;
1094 int m_currentImageId;
1099 double m_detectionScore;
1102 double m_detectionThreshold;
1104 double m_detectionTime;
1106 std::vector<std::string> m_detectorNames;
1110 std::map<std::string, cv::Ptr<cv::FeatureDetector> > m_detectors;
1112 double m_extractionTime;
1114 std::vector<std::string> m_extractorNames;
1118 std::map<std::string, cv::Ptr<cv::DescriptorExtractor> > m_extractors;
1120 std::vector<cv::DMatch> m_filteredMatches;
1124 vpImageFormatType m_imageFormat;
1127 std::vector<std::vector<cv::DMatch> > m_knnMatches;
1129 std::map<vpFeatureDescriptorType, std::string> m_mapOfDescriptorNames;
1131 std::map<vpFeatureDetectorType, std::string> m_mapOfDetectorNames;
1134 std::map<int, int> m_mapOfImageId;
1137 std::map<int, vpImage<unsigned char> > m_mapOfImages;
1140 cv::Ptr<cv::DescriptorMatcher> m_matcher;
1142 std::string m_matcherName;
1144 std::vector<cv::DMatch> m_matches;
1146 double m_matchingFactorThreshold;
1148 double m_matchingRatioThreshold;
1150 double m_matchingTime;
1152 std::vector<std::pair<cv::KeyPoint, cv::Point3f> > m_matchRansacKeyPointsToPoints;
1154 int m_nbRansacIterations;
1156 int m_nbRansacMinInlierCount;
1159 std::vector<cv::Point3f> m_objectFilteredPoints;
1164 cv::Mat m_queryDescriptors;
1166 std::vector<cv::KeyPoint> m_queryFilteredKeyPoints;
1168 std::vector<cv::KeyPoint> m_queryKeyPoints;
1171 double m_ransacConsensusPercentage;
1173 std::vector<vpImagePoint> m_ransacInliers;
1175 std::vector<vpImagePoint> m_ransacOutliers;
1178 double m_ransacReprojectionError;
1181 double m_ransacThreshold;
1185 cv::Mat m_trainDescriptors;
1187 std::vector<cv::KeyPoint> m_trainKeyPoints;
1190 std::vector<cv::Point3f> m_trainPoints;
1193 std::vector<vpPoint> m_trainVpPoints;
1196 bool m_useAffineDetection;
1197 #if (VISP_HAVE_OPENCV_VERSION >= 0x020400 && VISP_HAVE_OPENCV_VERSION < 0x030000) 1198 bool m_useBruteForceCrossCheck;
1203 bool m_useConsensusPercentage;
1212 bool m_useMatchTrainToQuery;
1214 bool m_useRansacVVS;
1217 bool m_useSingleMatchFilter;
1219 void affineSkew(
double tilt,
double phi, cv::Mat &img, cv::Mat &mask, cv::Mat &Ai);
1221 double computePoseEstimationError(
const std::vector<std::pair<cv::KeyPoint, cv::Point3f> > &matchKeyPoints,
1224 void filterMatches();
1227 void initDetector(
const std::string &detectorNames);
1228 void initDetectors(
const std::vector<std::string> &detectorNames);
1230 void initExtractor(
const std::string &extractorName);
1231 void initExtractors(
const std::vector<std::string> &extractorNames);
1233 void initFeatureNames();
1235 inline size_t myKeypointHash(
const cv::KeyPoint &kp)
1237 size_t _Val = 2166136261U, scale = 16777619U;
1240 _Val = (scale * _Val) ^ u.u;
1242 _Val = (scale * _Val) ^ u.u;
1244 _Val = (scale * _Val) ^ u.u;
1250 _Val = (scale * _Val) ^ u.u;
1251 _Val = (scale * _Val) ^ ((
size_t)kp.octave);
1252 _Val = (scale * _Val) ^ ((
size_t)kp.class_id);
1256 #if (VISP_HAVE_OPENCV_VERSION >= 0x030000) 1262 class PyramidAdaptedFeatureDetector :
public cv::FeatureDetector
1266 PyramidAdaptedFeatureDetector(
const cv::Ptr<cv::FeatureDetector> &detector,
int maxLevel = 2);
1269 virtual bool empty()
const;
1272 virtual void detect(cv::InputArray image, CV_OUT std::vector<cv::KeyPoint> &keypoints,
1273 cv::InputArray mask = cv::noArray());
1274 virtual void detectImpl(
const cv::Mat &image, std::vector<cv::KeyPoint> &keypoints,
1275 const cv::Mat &mask = cv::Mat())
const;
1277 cv::Ptr<cv::FeatureDetector> detector;
1287 class KeyPointsFilter
1290 KeyPointsFilter() {}
1295 static void runByImageBorder(std::vector<cv::KeyPoint> &keypoints, cv::Size imageSize,
int borderSize);
1299 static void runByKeypointSize(std::vector<cv::KeyPoint> &keypoints,
float minSize,
float maxSize = FLT_MAX);
1303 static void runByPixelsMask(std::vector<cv::KeyPoint> &keypoints,
const cv::Mat &mask);
1307 static void removeDuplicated(std::vector<cv::KeyPoint> &keypoints);
1313 static void retainBest(std::vector<cv::KeyPoint> &keypoints,
int npoints);
Implementation of a matrix and operations on matrices.
void setRansacIteration(const int nbIter)
cv::Ptr< cv::FeatureDetector > getDetector(const vpFeatureDetectorType &type) const
class that defines what is a Keypoint. This class provides all the basic elements to implement classe...
void setUseRansacVVS(const bool ransacVVS)
std::vector< std::pair< cv::KeyPoint, cv::KeyPoint > > getMatchQueryToTrainKeyPoints() const
Implementation of an homogeneous matrix and operations on such kind of matrices.
void setRansacThreshold(const double threshold)
cv::Ptr< cv::DescriptorMatcher > getMatcher() const
void setExtractor(const std::string &extractorName)
void setUseSingleMatchFilter(const bool singleMatchFilter)
Class to define colors available for display functionnalities.
std::map< vpFeatureDetectorType, std::string > getDetectorNames() const
double getDetectionTime() const
error that can be emited by ViSP classes.
void setDetectors(const std::vector< std::string > &detectorNames)
cv::Mat getTrainDescriptors() const
vpMatrix getCovarianceMatrix() const
static const vpColor green
Class that defines what is a point.
std::vector< vpImagePoint > getRansacOutliers() const
void setExtractors(const std::vector< std::string > &extractorNames)
void setMatcher(const std::string &matcherName)
void setUseMatchTrainToQuery(const bool useMatchTrainToQuery)
cv::Mat getQueryDescriptors() const
std::map< vpFeatureDescriptorType, std::string > getExtractorNames() const
std::vector< vpImagePoint > getRansacInliers() const
virtual unsigned int buildReference(const vpImage< unsigned char > &I)=0
Generic class defining intrinsic camera parameters.
void setDetector(const vpFeatureDetectorType &detectorType)
double getPoseTime() const
unsigned int getNbImages() const
void setDetectionMethod(const vpDetectionMethodType &method)
void setUseBruteForceCrossCheck(const bool useCrossCheck)
void setRansacMinInlierCount(const int minCount)
void setImageFormat(const vpImageFormatType &imageFormat)
virtual void display(const vpImage< unsigned char > &Iref, const vpImage< unsigned char > &Icurrent, unsigned int size=3)=0
void setRansacConsensusPercentage(const double percentage)
virtual unsigned int matchPoint(const vpImage< unsigned char > &I)=0
cv::Ptr< cv::DescriptorExtractor > getExtractor(const std::string &name) const
void setUseAffineDetection(const bool useAffine)
Class that allows keypoints detection (and descriptors extraction) and matching thanks to OpenCV libr...
cv::Ptr< cv::FeatureDetector > getDetector(const std::string &name) const
double getExtractionTime() const
void setDetectorParameter(const T1 detectorName, const T2 parameterName, const T3 value)
std::vector< cv::DMatch > getMatches() const
double getMatchingTime() const
cv::Ptr< cv::DescriptorExtractor > getExtractor(const vpFeatureDescriptorType &type) const
void setDetector(const std::string &detectorName)
Defines a rectangle in the plane.
vpImageFormatType getImageFormat() const
void setExtractorParameter(const T1 extractorName, const T2 parameterName, const T3 value)
void setUseRansacConsensusPercentage(const bool usePercentage)
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
void setFilterMatchingType(const vpFilterMatchingType &filterType)
void setMatchingFactorThreshold(const double factor)
void setExtractor(const vpFeatureDescriptorType &extractorType)
void setRansacReprojectionError(const double reprojectionError)
void setMatchingRatioThreshold(const double ratio)
void setCovarianceComputation(const bool &flag)