Visual Servoing Platform  version 3.0.1
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
servoViper850Point2DArtVelocity-jointAvoidance-large.cpp

Joint limits avoidance using a secondary task for joint limit avoidance [27] using the new large projection operator (see equation(24) in the paper [26]).

/****************************************************************************
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2017 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* tests the control law
* eye-in-hand control
* velocity computed in articular
*
* Authors:
* Eric Marchand
* Fabien Spindler
* Giovanni Claudio
*
*****************************************************************************/
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h> // Debug trace
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <sstream>
#if (defined (VISP_HAVE_VIPER850) && defined (VISP_HAVE_DC1394_2) && defined(VISP_HAVE_DISPLAY))
#include <visp3/sensor/vp1394TwoGrabber.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpDisplay.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/core/vpPoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/robot/vpRobotViper850.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpException.h>
#include <visp3/vs/vpServoDisplay.h>
#include <visp3/blob/vpDot2.h>
#include <visp3/gui/vpPlot.h>
int
main()
{
try {
vpServo task ;
bool reset = false;
vp1394TwoGrabber g(reset);
g.open(I) ;
g.acquire(I) ;
#ifdef VISP_HAVE_X11
vpDisplayX display(I,800,100,"Current image") ;
#elif defined(VISP_HAVE_OPENCV)
vpDisplayOpenCV display(I,800,100,"Current image") ;
#elif defined(VISP_HAVE_GTK)
vpDisplayGTK display(I,800,100,"Current image") ;
#endif
vpColVector jointMin(6), jointMax(6) ;
jointMin = robot.getJointMin();
jointMax = robot.getJointMax();
vpColVector Qmiddle(6);
vpColVector data(12) ;
Qmiddle = (jointMin + jointMax) /2.;
// double rho1 = 0.1 ;
double rho = 0.1;
double rho1 = 0.3;
vpColVector q(6) ;
// Create a window with two graphics
// - first graphic to plot q(t), Qmin, Qmax, Ql0min, Ql1min, Ql0max and Ql1max
vpPlot plot(2);
// The first graphic contains 12 data to plot: q(t), Low Limits, Upper Limits, ql0min, ql1min, ql0max and ql1max
plot.initGraph(0, 12);
// The second graphic contains the values of the secondaty task velocities
plot.initGraph(1, 6);
// For the first graphic :
// - along the x axis the expected values are between 0 and 200
// - along the y axis the expected values are between -1.2 and 1.2
plot.initRange(0, 0., 200., -1.2, 1.2);
plot.setTitle(0, "Joint behavior");
// For the second graphic :
plot.setTitle(1, "Q secondary task");
// For the first and second graphic, set the curves legend
char legend[10];
for (unsigned int i=0; i < 6; i++) {
sprintf(legend, "q%u", i+1);
plot.setLegend(0, i, legend);
plot.setLegend(1, i, legend);
}
plot.setLegend(0, 6, "Low Limit");
plot.setLegend(0, 7, "Upper Limit");
plot.setLegend(0, 8, "ql0 min");
plot.setLegend(0, 9, "ql0 max");
plot.setLegend(0, 10, "ql1 min");
plot.setLegend(0, 11, "ql1 max");
// Set the curves color
plot.setColor(0, 0, vpColor::red);
plot.setColor(0, 1, vpColor::green);
plot.setColor(0, 2, vpColor::blue);
plot.setColor(0, 4, vpColor(0, 128, 0));
plot.setColor(0, 5, vpColor::cyan);
for (unsigned int i= 6; i < 12; i++)
plot.setColor(0, i, vpColor::black); // for Q and tQ [min,max]
vpColVector sec_task(6) ;
vpDot2 dot ;
std::cout << "Click on a dot..." << std::endl;
dot.initTracking(I) ;
vpImagePoint cog = dot.getCog();
// Update camera parameters
robot.getCameraParameters (cam, I);
// sets the current position of the visual feature
vpFeatureBuilder::create(p,cam, dot) ; //retrieve x,y and Z of the vpPoint structure
p.set_Z(1) ;
// sets the desired position of the visual feature
pd.buildFrom(0,0,1) ;
// Define the task
// - we want an eye-in-hand control law
// - articular velocity are computed
robot.get_cVe(cVe) ;
std::cout << cVe <<std::endl ;
task.set_cVe(cVe) ;
// - Set the Jacobian (expressed in the end-effector frame)") ;
vpMatrix eJe ;
robot.get_eJe(eJe) ;
task.set_eJe(eJe) ;
// - we want to see a point on a point..") ;
std::cout << std::endl ;
task.addFeature(p,pd) ;
// - set the gain
task.setLambda(0.8) ;
// Display task information " ) ;
task.print() ;
int iter = 0;
std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
for ( ; ; ) {
iter ++;
// Acquire a new image from the camera
g.acquire(I) ;
// Display this image
// Achieve the tracking of the dot in the image
dot.track(I) ;
cog = dot.getCog();
// Display a green cross at the center of gravity position in the image
// Get the measured joint positions of the robot
// Update the point feature from the dot location
// Get the jacobian of the robot
robot.get_eJe(eJe) ;
// Update this jacobian in the task structure. It will be used to compute
// the velocity skew (as an articular velocity)
// qdot = -lambda * L^+ * cVe * eJe * (s-s*)
task.set_eJe(eJe) ;
vpColVector prim_task ;
// Compute the visual servoing skew vector
prim_task = task.computeControlLaw() ;
// Compute the secondary task for the joint limit avoidance
sec_task = task.secondaryTaskJointLimitAvoidance(q, prim_task, jointMin, jointMax, rho, rho1);
v = prim_task + sec_task;
// Display the current and desired feature points in the image display
vpServoDisplay::display(task, cam, I) ;
// Apply the computed joint velocities to the robot
{
// Add the material to plot curves
// q normalized between (entre -1 et 1)
for (unsigned int i=0 ; i < 6 ; i++) {
data[i] = (q[i] - Qmiddle[i]) ;
data[i] /= (jointMax[i] - jointMin[i]) ;
data[i]*=2 ;
}
data[6] = -1.0;
data[7] = 1.0;
unsigned int joint = 2;
double tQmin_l0 = jointMin[joint] + rho *(jointMax[joint] - jointMin[joint]);
double tQmax_l0 = jointMax[joint] - rho *(jointMax[joint] - jointMin[joint]);
double tQmin_l1 = tQmin_l0 - rho * rho1 * (jointMax[joint] - jointMin[joint]);
double tQmax_l1 = tQmax_l0 + rho * rho1 * (jointMax[joint] - jointMin[joint]);
data[8] = 2*(tQmin_l0 - Qmiddle[joint])/(jointMax[joint] - jointMin[joint]);
data[9] = 2*(tQmax_l0 - Qmiddle[joint])/(jointMax[joint] - jointMin[joint]);
data[10] = 2*(tQmin_l1 - Qmiddle[joint])/(jointMax[joint] - jointMin[joint]);
data[11] = 2*(tQmax_l1 - Qmiddle[joint])/(jointMax[joint] - jointMin[joint]);
plot.plot(0, iter, data); // plot q(t), Low Limits, Upper Limits, ql0min, ql1min, ql0max and ql1max
plot.plot(1, iter, sec_task); //plot secondary task velocities
}
}
// Display task information
task.print() ;
task.kill();
return 0;
}
catch (...)
{
vpERROR_TRACE(" Test failed") ;
return 0;
}
}
#else
int
main()
{
vpERROR_TRACE("You do not have an afma6 robot or a firewire framegrabber connected to your computer...");
}
#endif