Visual Servoing Platform  version 3.0.1
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
servoSimuFourPoints2DCamVelocity.cpp
1 /****************************************************************************
2  *
3  * This file is part of the ViSP software.
4  * Copyright (C) 2005 - 2017 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * ("GPL") version 2 as published by the Free Software Foundation.
9  * See the file LICENSE.txt at the root directory of this source
10  * distribution for additional information about the GNU GPL.
11  *
12  * For using ViSP with software that can not be combined with the GNU
13  * GPL, please contact Inria about acquiring a ViSP Professional
14  * Edition License.
15  *
16  * See http://visp.inria.fr for more information.
17  *
18  * This software was developed at:
19  * Inria Rennes - Bretagne Atlantique
20  * Campus Universitaire de Beaulieu
21  * 35042 Rennes Cedex
22  * France
23  *
24  * If you have questions regarding the use of this file, please contact
25  * Inria at visp@inria.fr
26  *
27  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
28  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
29  *
30  * Description:
31  * Simulation of a 2D visual servoing using 4 points as visual feature.
32  *
33  * Authors:
34  * Eric Marchand
35  * Fabien Spindler
36  *
37  *****************************************************************************/
38 
53 #include <stdlib.h>
54 #include <stdio.h>
55 
56 #include <visp3/core/vpConfig.h>
57 #include <visp3/visual_features/vpFeatureBuilder.h>
58 #include <visp3/visual_features/vpFeaturePoint.h>
59 #include <visp3/core/vpHomogeneousMatrix.h>
60 #include <visp3/core/vpMath.h>
61 #include <visp3/io/vpParseArgv.h>
62 #include <visp3/vs/vpServo.h>
63 #include <visp3/robot/vpSimulatorCamera.h>
64 
65 // List of allowed command line options
66 #define GETOPTARGS "h"
67 
68 void usage(const char *name, const char *badparam);
69 bool getOptions(int argc, const char **argv);
70 
79 void usage(const char *name, const char *badparam)
80 {
81  fprintf(stdout, "\n\
82 Simulation of a 2D visual servoing:\n\
83 - servo on 4 points,\n\
84 - eye-in-hand control law,\n\
85 - articular velocity are computed,\n\
86 - without display.\n\
87  \n\
88 SYNOPSIS\n\
89  %s [-h]\n", name);
90 
91  fprintf(stdout, "\n\
92 OPTIONS: Default\n\
93  \n\
94  -h\n\
95  Print the help.\n");
96 
97  if (badparam) {
98  fprintf(stderr, "ERROR: \n" );
99  fprintf(stderr, "\nBad parameter [%s]\n", badparam);
100  }
101 }
102 
113 bool getOptions(int argc, const char **argv)
114 {
115  const char *optarg_;
116  int c;
117  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
118 
119  switch (c) {
120  case 'h': usage(argv[0], NULL); return false; break;
121 
122  default:
123  usage(argv[0], optarg_);
124  return false; break;
125  }
126  }
127 
128  if ((c == 1) || (c == -1)) {
129  // standalone param or error
130  usage(argv[0], NULL);
131  std::cerr << "ERROR: " << std::endl;
132  std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
133  return false;
134  }
135 
136  return true;
137 }
138 
139 int
140 main(int argc, const char ** argv)
141 {
142  try {
143  // Read the command line options
144  if (getOptions(argc, argv) == false) {
145  exit (-1);
146  }
147 
148  int i ;
149  vpServo task ;
150  vpSimulatorCamera robot ;
151 
152 
153  std::cout << std::endl ;
154  std::cout << "-------------------------------------------------------" << std::endl ;
155  std::cout << " Test program for vpServo " <<std::endl ;
156  std::cout << " Eye-in-hand task control, articular velocity are computed" << std::endl ;
157  std::cout << " Simulation " << std::endl ;
158  std::cout << " task : servo 4 points " << std::endl ;
159  std::cout << "-------------------------------------------------------" << std::endl ;
160  std::cout << std::endl ;
161 
162  // sets the initial camera location with respect to the object
163  vpHomogeneousMatrix cMo ;
164  cMo[0][3] = 0.1 ;
165  cMo[1][3] = 0.2 ;
166  cMo[2][3] = 2 ;
167 
168  // Compute the position of the object in the world frame
169  vpHomogeneousMatrix wMc, wMo;
170  robot.getPosition(wMc) ;
171  wMo = wMc * cMo;
172 
173  // sets the point coordinates in the object frame
174  vpPoint point[4] ;
175  point[0].setWorldCoordinates(-1,-1,0) ;
176  point[1].setWorldCoordinates(1,-1,0) ;
177  point[2].setWorldCoordinates(1,1,0) ;
178  point[3].setWorldCoordinates(-1,1,0) ;
179 
180  // computes the point coordinates in the camera frame and its 2D coordinates
181  for (i = 0 ; i < 4 ; i++)
182  point[i].track(cMo) ;
183 
184  // sets the desired position of the point
185  vpFeaturePoint p[4] ;
186  for (i = 0 ; i < 4 ; i++)
187  vpFeatureBuilder::create(p[i], point[i]) ; //retrieve x,y and Z of the vpPoint structure
188 
189  // sets the desired position of the point
190  vpFeaturePoint pd[4] ;
191 
192  pd[0].buildFrom(-0.1,-0.1, 1) ;
193  pd[1].buildFrom( 0.1,-0.1, 1) ;
194  pd[2].buildFrom( 0.1, 0.1, 1) ;
195  pd[3].buildFrom(-0.1, 0.1, 1) ;
196 
197  // define the task
198  // - we want an eye-in-hand control law
199  // - articular velocity are computed
202 
203  // Set the position of the camera in the end-effector frame
204  vpHomogeneousMatrix cMe ;
205  vpVelocityTwistMatrix cVe(cMe) ;
206  task.set_cVe(cVe) ;
207 
208  // Set the Jacobian (expressed in the end-effector frame)
209  vpMatrix eJe ;
210  robot.get_eJe(eJe) ;
211  task.set_eJe(eJe) ;
212 
213  // we want to see a point on a point
214  for (i = 0 ; i < 4 ; i++)
215  task.addFeature(p[i],pd[i]) ;
216 
217  // set the gain
218  task.setLambda(1) ;
219 
220  // Display task information
221  task.print() ;
222 
223  unsigned int iter=0 ;
224  // loop
225  while(iter++<1500)
226  {
227  std::cout << "---------------------------------------------" << iter <<std::endl ;
228  vpColVector v ;
229 
230  // Set the Jacobian (expressed in the end-effector frame)
231  // since q is modified eJe is modified
232  robot.get_eJe(eJe) ;
233  task.set_eJe(eJe) ;
234 
235  // get the robot position
236  robot.getPosition(wMc) ;
237  // Compute the position of the camera wrt the object frame
238  cMo = wMc.inverse() * wMo;
239 
240  // update new point position and corresponding features
241  for (i = 0 ; i < 4 ; i++)
242  {
243  point[i].track(cMo) ;
244  //retrieve x,y and Z of the vpPoint structure
245  vpFeatureBuilder::create(p[i],point[i]) ;
246  }
247  // since vpServo::MEAN interaction matrix is used, we need also to update the desired features at each iteration
248  pd[0].buildFrom(-0.1,-0.1, 1) ;
249  pd[1].buildFrom( 0.1,-0.1, 1) ;
250  pd[2].buildFrom( 0.1, 0.1, 1) ;
251  pd[3].buildFrom(-0.1, 0.1, 1) ;
252 
253  // compute the control law ") ;
254  v = task.computeControlLaw() ;
255 
256  // send the camera velocity to the controller ") ;
258 
259  std::cout << "|| s - s* || = " << ( task.getError() ).sumSquare() << std::endl;
260  }
261 
262  // Display task information
263  task.print() ;
264  task.kill();
265  return 0;
266  }
267  catch(vpException &e) {
268  std::cout << "Catch a ViSP exception: " << e << std::endl;
269  return 1;
270  }
271 }
272 
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:97
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
Implementation of an homogeneous matrix and operations on such kind of matrices.
Class that defines the simplest robot: a free flying camera.
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:460
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, const unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:512
error that can be emited by ViSP classes.
Definition: vpException.h:73
void track(const vpHomogeneousMatrix &cMo)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:76
Class that defines what is a point.
Definition: vpPoint.h:59
void kill()
Definition: vpServo.cpp:191
vpColVector getError() const
Definition: vpServo.h:271
vpColVector computeControlLaw()
Definition: vpServo.cpp:954
void setLambda(double c)
Definition: vpServo.h:391
vpHomogeneousMatrix getPosition() const
Implementation of a velocity twist matrix and operations on such kind of matrices.
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:585
void buildFrom(const double x, const double y, const double Z)
void setWorldCoordinates(const double oX, const double oY, const double oZ)
Definition: vpPoint.cpp:111
Implementation of column vector and the associated operations.
Definition: vpColVector.h:72
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:435
vpHomogeneousMatrix inverse() const
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:314
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
void get_eJe(vpMatrix &eJe)
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:222