ViSP  2.8.0
servoSimuFourPoints2DCamVelocityDisplay.cpp

Simulation of a 2D visual servoing:Simulation of a 2D visual servoing:

Interaction matrix is computed as the mean of the current and desired interaction matrix.

/****************************************************************************
*
* $Id: servoSimuFourPoints2DCamVelocityDisplay.cpp 2503 2010-02-16 18:55:01Z fspindle $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* Simulation of a 2D visual servoing using 4 points as visual feature.
*
* Authors:
* Eric Marchand
* Fabien Spindler
*
*****************************************************************************/
#include <visp/vpConfig.h>
#if (defined (VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI))
#include <stdlib.h>
#include <stdio.h>
#include <visp/vpCameraParameters.h>
#include <visp/vpDisplayX.h>
#include <visp/vpDisplayGTK.h>
#include <visp/vpDisplayGDI.h>
#include <visp/vpFeatureBuilder.h>
#include <visp/vpFeaturePoint.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpImage.h>
#include <visp/vpMath.h>
#include <visp/vpParseArgv.h>
#include <visp/vpProjectionDisplay.h>
#include <visp/vpServo.h>
#include <visp/vpServoDisplay.h>
#include <visp/vpSimulatorCamera.h>
// List of allowed command line options
#define GETOPTARGS "cdh"
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Tests a control law with the following characteristics:\n\
- eye-in-hand control\n\
- articular velocity are computed\n\
- servo on 4 points,\n\
- internal and external camera view displays.\n\
\n\
SYNOPSIS\n\
%s [-c] [-d] [-h]\n", name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-c\n\
Disable the mouse click. Useful to automaze the \n\
execution of this program without humain intervention.\n\
\n\
-d \n\
Turn off the display.\n\
\n\
-h\n\
Print the help.\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display)
{
const char *optarg;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg)) > 1) {
switch (c) {
case 'c': click_allowed = false; break;
case 'd': display = false; break;
case 'h': usage(argv[0], NULL); return false; break;
default:
usage(argv[0], optarg);
return false; break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg << std::endl << std::endl;
return false;
}
return true;
}
int
main(int argc, const char ** argv)
{
bool opt_click_allowed = true;
bool opt_display = true;
// Read the command line options
if (getOptions(argc, argv, opt_click_allowed, opt_display) == false) {
exit (-1);
}
// We open two displays, one for the internal camera view, the other one for
// the external view, using either X11, GTK or GDI.
#if defined VISP_HAVE_X11
vpDisplayX displayInt;
vpDisplayX displayExt;
#elif defined VISP_HAVE_GTK
vpDisplayGTK displayInt;
vpDisplayGTK displayExt;
#elif defined VISP_HAVE_GDI
vpDisplayGDI displayInt;
vpDisplayGDI displayExt;
#endif
// open a display for the visualization
vpImage<unsigned char> Iint(300, 300, 0) ;
vpImage<unsigned char> Iext(300, 300, 0) ;
if (opt_display) {
displayInt.init(Iint,0,0, "Internal view") ;
displayExt.init(Iext,330,000, "External view") ;
}
vpProjectionDisplay externalview ;
double px, py ; px = py = 500 ;
double u0, v0 ; u0 = 150, v0 = 160 ;
vpCameraParameters cam(px,py,u0,v0);
int i ;
vpServo task ;
std::cout << std::endl ;
std::cout << "----------------------------------------------" << std::endl ;
std::cout << " Test program for vpServo " <<std::endl ;
std::cout << " Eye-in-hand task control, articular velocity are computed"
<< std::endl ;
std::cout << " Simulation " << std::endl ;
std::cout << " task : servo 4 points " << std::endl ;
std::cout << "----------------------------------------------" << std::endl ;
std::cout << std::endl ;
// sets the initial camera location
vpHomogeneousMatrix cMo(-0.1,-0.1,1,
// Compute the position of the object in the world frame
robot.getPosition(wMc) ;
wMo = wMc * cMo;
vpHomogeneousMatrix cextMo(0,0,2,
0,0,0) ;//vpMath::rad(40), vpMath::rad(10), vpMath::rad(60)) ;
// sets the point coordinates in the object frame
vpPoint point[4] ;
point[0].setWorldCoordinates(-0.1,-0.1,0) ;
point[1].setWorldCoordinates(0.1,-0.1,0) ;
point[2].setWorldCoordinates(0.1,0.1,0) ;
point[3].setWorldCoordinates(-0.1,0.1,0) ;
for (i = 0 ; i < 4 ; i++)
externalview.insert(point[i]) ;
// computes the point coordinates in the camera frame and its 2D coordinates
for (i = 0 ; i < 4 ; i++)
point[i].track(cMo) ;
// sets the desired position of the point
for (i = 0 ; i < 4 ; i++)
vpFeatureBuilder::create(p[i],point[i]) ; //retrieve x,y and Z of the vpPoint structure
// sets the desired position of the feature point s*
pd[0].buildFrom(-0.1,-0.1, 1) ;
pd[1].buildFrom( 0.1,-0.1, 1) ;
pd[2].buildFrom( 0.1, 0.1, 1) ;
pd[3].buildFrom(-0.1, 0.1, 1) ;
// define the task
// - we want an eye-in-hand control law
// - articular velocity are computed
// Set the position of the camera in the end-effector frame ") ;
task.set_cVe(cVe) ;
// Set the Jacobian (expressed in the end-effector frame)
vpMatrix eJe ;
robot.get_eJe(eJe) ;
task.set_eJe(eJe) ;
// we want to see a point on a point
for (i = 0 ; i < 4 ; i++)
task.addFeature(p[i],pd[i]) ;
// set the gain
task.setLambda(1) ;
// Display task information " ) ;
task.print() ;
unsigned int iter=0 ;
// loop
while(iter++<200)
{
std::cout << "---------------------------------------------" << iter <<std::endl ;
// Set the Jacobian (expressed in the end-effector frame)
// since q is modified eJe is modified
robot.get_eJe(eJe) ;
task.set_eJe(eJe) ;
// get the robot position
robot.getPosition(wMc) ;
// Compute the position of the camera wrt the object frame
cMo = wMc.inverse() * wMo;
// update new point position and corresponding features
for (i = 0 ; i < 4 ; i++)
{
point[i].track(cMo) ;
//retrieve x,y and Z of the vpPoint structure
vpFeatureBuilder::create(p[i],point[i]) ;
}
// since vpServo::MEAN interaction matrix is used, we need also to update the desired features at each iteration
pd[0].buildFrom(-0.1,-0.1, 1) ;
pd[1].buildFrom( 0.1,-0.1, 1) ;
pd[2].buildFrom( 0.1, 0.1, 1) ;
pd[3].buildFrom(-0.1, 0.1, 1) ;
if (opt_display) {
vpServoDisplay::display(task,cam,Iint) ;
externalview.display(Iext,cextMo, cMo, cam, vpColor::green) ;
}
// compute the control law
v = task.computeControlLaw() ;
// send the camera velocity to the controller
std::cout << "|| s - s* || = " << ( task.getError() ).sumSquare() <<std::endl ;
}
// Display task information
task.print() ;
task.kill();
std::cout <<"Final robot position with respect to the object frame:\n";
cMo.print();
if (opt_display && opt_click_allowed) {
// suppressed for automate test
std::cout << "\n\nClick in the internal view window to end..." << std::endl;
}
}
#else
#include <iostream>
int main()
{
std::cout << "You do not have X11, GTK or GDI display functionalities..." << std::endl;
}
#endif