Introduction
This tutorial follows Tutorial: Live color segmentation using HSV color scale .
To run this tutorial you will need:
a Realsense camera like a D435 device
ViSP build with librealsense and PCL libraries as 3rd parties
We suppose here that you already set the HSV low/high ranges using the range tuner tool explained in Tutorial: HSV low/high range tuner tool .
Note that all the material (source code and images) described in this tutorial is part of ViSP source code (in tutorial/segmentation/color
folder) and could be found in https://github.com/lagadic/visp/tree/master/tutorial/segmentation/color .
Point cloud segmentation
In Tutorial: Introduction to color segmentation using HSV color scale the pipeline to achieve the HSV color segmentation was to:
To extend this pipeline to create a point cloud that contains only the 3D points that are in the mask you need a RGB-D device. In our case we will consider a Realsense camera. The pipeline becomes:
configure the realsense grabber to acquire color and depth aligned images int width = 848, height = 480, fps = 60;
rs2::config config;
config.enable_stream(RS2_STREAM_COLOR, width, height, RS2_FORMAT_RGBA8, fps);
config.enable_stream(RS2_STREAM_DEPTH, width, height, RS2_FORMAT_Z16, fps);
config.disable_stream(RS2_STREAM_INFRARED, 1);
config.disable_stream(RS2_STREAM_INFRARED, 2);
rs2::align align_to(RS2_STREAM_COLOR);
get depth scale associated to the depth images and device intrisics
Generic class defining intrinsic camera parameters.
@ perspectiveProjWithoutDistortion
Perspective projection without distortion model.
vpCameraParameters getCameraParameters(const rs2_stream &stream, vpCameraParameters::vpCameraParametersProjType type=vpCameraParameters::perspectiveProjWithDistortion, int index=-1) const
grab color and depth aligned images rs.
acquire ((
unsigned char *)I.
bitmap , (
unsigned char *)(depth_raw.bitmap), NULL, NULL, &align_to);
Type * bitmap
points toward the bitmap
void acquire(vpImage< unsigned char > &grey, double *ts=nullptr)
convert from RGB to HSV channels using vpImageConvert::RGBaToHSV()
reinterpret_cast< unsigned char *> (H.bitmap),
reinterpret_cast< unsigned char *> (S.bitmap),
reinterpret_cast< unsigned char *
> (V.bitmap), I.
getSize ());
static void RGBaToHSV(const unsigned char *rgba, double *hue, double *saturation, double *value, unsigned int size)
unsigned int getSize() const
create a mask with pixels that are in the low/high HSV ranges using vpImageTools::inRange()
reinterpret_cast< unsigned char *> (S.bitmap),
reinterpret_cast< unsigned char *> (V.bitmap),
hsv_values,
reinterpret_cast< unsigned char *> (mask.bitmap),
mask.getSize());
create the point cloud object. Note here the Z_min
and Z_max
variables, which are used further in the code to remove 3D points that are too close or too far from the camera float Z_min = 0.1;
float Z_max = 2.5;
pcl::PointCloud<pcl::PointXYZ>::Ptr pointcloud(new pcl::PointCloud<pcl::PointXYZ>());
using the mask and the depth image update the point cloud using vpImageConvert::depthToPointCloud() . The corresponding point cloud is available in pointcloud
variable.
static int depthToPointCloud(const vpImage< uint16_t > &depth_raw, float depth_scale, const vpCameraParameters &cam_depth, pcl::PointCloud< pcl::PointXYZ >::Ptr pointcloud, std::mutex *pointcloud_mutex=nullptr, const vpImage< unsigned char > *mask=nullptr, float Z_min=0.2, float Z_max=2.5)
to know the size of the point cloud use int pcl_size = pointcloud->size();
Instead, you can also use the value returned by vpImageConvert::depthToPointCloud() to get the point cloud size.
All these steps are implemented in tutorial-hsv-segmentation-pcl.cpp
To run this tutorial
$ cd $VISP_WS/visp-build/tutorial/segmentation/color
$ ./tutorial-hsv-segmentation-pcl --hsv-thresholds calib/hsv-thresholds.yml
In the next section we show how to display the point cloud.
Point could viewer
In tutorial-hsv-segmentation-pcl-viewer.cpp you will find an extension of the previous code with the introduction of vpDisplayPCL class that allows to visualize the point cloud in 3D with optionally additional texture information taken from the color image.
To add the point cloud viewer feature:
Fisrt you need to include vpDisplayPCL header #include <visp3/gui/vpDisplayPCL.h>
Then, we declare two pcl objects for textured and untextured point clouds respectively pcl::PointCloud<pcl::PointXYZRGB>::Ptr pointcloud_color(new pcl::PointCloud<pcl::PointXYZRGB>());
pcl::PointCloud<pcl::PointXYZ>::Ptr pointcloud(new pcl::PointCloud<pcl::PointXYZ>());
Since the point cloud viewer will run in a separate thread, to avoid concurrent access to pointcloud
or pointcloud_color
objects, we introduce a mutex, declare the PCL viewer object and launch the viewer thread, either for textured or untextured point clouds std::mutex pointcloud_mutex;
if (opt_pcl_textured) {
pcl_viewer.startThread(std::ref(pointcloud_mutex), pointcloud_color);
}
else {
pcl_viewer.startThread(std::ref(pointcloud_mutex), pointcloud);
}
In the while()
loop we update the point cloud using the mutex shared with the pcl viewer int pcl_size;
if (opt_pcl_textured) {
}
else {
}
if (opt_verbose) {
std::cout << "Segmented point cloud size: " << pcl_size << std::endl;
}
To run this tutorial
Learn the color of the object from which you want to extract the corresponding point cloud $ cd $VISP_WS/visp-build/tutorial/segmentation/color
$ ./tutorial-hsv-range-tuner --hsv-thresholds calib/hsv-thresholds.yml
Visualize to corresponding point cloud $ ./tutorial-hsv-segmentation-pcl-viewer --hsv-thresholds calib/hsv-thresholds.yml --texture
At this point, you should see something similar to the following video, where the top left image corresponds to the live stream provided by a Realsense D435 camera, the top right image to the HSV yellow color segmentation, and the bottom right image to the PCL point cloud viewer used to visualize the textured point cloud corresponding to the yellow pixels in real time.
VIDEO
Known issue
Segfault in PCL viewer
There is a known issue related to the call to PCLVisualizer::spinOnce() function that is used in vpDisplayPCL class. This issue is reported in https://github.com/PointCloudLibrary/pcl/issues/5237 and occurs with PCL 1.12.1 and VTK 9.1 on Ubuntu 22.04.
The workaround consists in installing the lastest PCL release.
First uninstall libpcl-dev
package $ sudo apt remove libpcl-dev
Then download and install latest PCL release from source. In our case we installed PCL 1.14.0 on Ubuntu 22.04 with: $ mkdir -p $VISP_WS/3rdparty/pcl
$ cd $VISP_WS/3rdparty/pcl
$ git clone --branch pcl-1.14.0 https://github.com/PointCloudLibrary/pcl pcl-1.14.0
$ mkdir pcl-1.14.0/build
$ cd pcl-1.14.0/build
$ make -j$(nproc)
$ sudo make install
Finally, create a fresh ViSP configuration and build. Warning It could be nice to create a backup of the visp-build
folder before removing it.
$ cd $VISP_WS
$ rm -rf visp-build
$ mkdir visp-build && cd visp-build
$ cmake ../visp
$ make -j$(nproc)
Next tutorial
You are now ready to see how to continue with Tutorial: Image frame grabbing .