Visual Servoing Platform  version 3.5.1 under development (2022-12-07)
testUniversalRobotsCartPosition.cpp

Test robot from Universal Robots cartesian positioning controller implemented in vpRobotUniversalRobots.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2022 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Test Universal Robot behavior.
*
* Authors:
* Fabien Spindler
*
*****************************************************************************/
#include <iostream>
#include <visp3/core/vpConfig.h>
#if defined(VISP_HAVE_UR_RTDE) && (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
#include <visp3/robot/vpRobotUniversalRobots.h>
int main(int argc, char **argv)
{
std::string robot_ip = "192.168.0.100";
for (int i = 1; i < argc; i++) {
if (std::string(argv[i]) == "--ip" && i + 1 < argc) {
robot_ip = std::string(argv[i + 1]);
} else if (std::string(argv[i]) == "--help" || std::string(argv[i]) == "-h") {
std::cout << argv[0] << " [--ip " << robot_ip << "] [--help] [-h]"
<< "\n";
return EXIT_SUCCESS;
}
}
try {
robot.connect(robot_ip);
std::cout << "Connected robot model: " << robot.getRobotModel() << std::endl;
std::cout << "WARNING: This example will move the robot! "
<< "Please make sure to have the user stop button at hand!" << std::endl
<< "Press Enter to continue..." << std::endl;
std::cin.ignore();
/*
* Move to a safe position
*/
vpColVector q(6, 0);
q[0] = 0;
q[1] = -M_PI_2;
q[2] = M_PI_2;
q[3] = -M_PI_2;
q[4] = -M_PI_2;
q[5] = 0;
std::cout << "Move to joint position: " << q.t() << std::endl;
robot.setPosition(vpRobot::JOINT_STATE, q);
// Get current cartesian position
vpHomogeneousMatrix fMe = robot.get_fMe();
// Target 10 cm up in the Z-Axis of the end-effector
fMe[2][3] += 0.1;
// Move to cartesian position
robot.setPosition(vpRobot::END_EFFECTOR_FRAME, vpPoseVector(fMe));
// Come back to initial position
robot.setPosition(vpRobot::JOINT_STATE, q);
// Get current cartesian position
vpHomogeneousMatrix fMc = robot.get_fMc();
// Target 10 cm up in the Z-Axis of the camera frame
fMc[2][3] += 0.1;
// Move to cartesian position
robot.setPosition(vpRobot::CAMERA_FRAME, vpPoseVector(fMc));
} catch (const vpException &e) {
std::cout << "ViSP exception: " << e.what() << std::endl;
return EXIT_FAILURE;
} catch (const std::exception &e) {
std::cout << "ur_rtde exception: " << e.what() << std::endl;
return EXIT_FAILURE;
}
std::cout << "The end" << std::endl;
return EXIT_SUCCESS;
}
#else
int main()
{
#if !defined(VISP_HAVE_UR_RTDE)
std::cout << "ViSP is not build with libur_rtde 3rd party used to control a robot from Universal Robots..."
<< std::endl;
#endif
#if (VISP_CXX_STANDARD < VISP_CXX_STANDARD_11)
std::cout << "Build ViSP with c++11 or higher compiler flag (cmake -DUSE_CXX_STANDARD=11)." << std::endl;
#endif
}
#endif
Implementation of column vector and the associated operations.
Definition: vpColVector.h:131
vpRowVector t() const
error that can be emited by ViSP classes.
Definition: vpException.h:72
const char * what() const
Definition: vpException.cpp:99
Implementation of an homogeneous matrix and operations on such kind of matrices.
Implementation of a pose vector and operations on poses.
Definition: vpPoseVector.h:152
@ JOINT_STATE
Definition: vpRobot.h:81
@ CAMERA_FRAME
Definition: vpRobot.h:83
@ END_EFFECTOR_FRAME
Definition: vpRobot.h:82
@ STATE_POSITION_CONTROL
Initialize the position controller.
Definition: vpRobot.h:68
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:201