Visual Servoing Platform  version 3.6.1 under development (2024-10-02)
testLineFitting.cpp

Test line fitting.

/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Test line fitting.
*/
#include <visp3/core/vpConfig.h>
#ifdef VISP_HAVE_CATCH2
#include <visp3/core/vpGaussRand.h>
#include <visp3/core/vpMath.h>
#define CATCH_CONFIG_RUNNER
#include <catch.hpp>
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
namespace
{
void convertLineEquation(double A, double B, double C, double &a, double &b)
{
a = -A / B;
b = C / B;
}
} // namespace
TEST_CASE("Line fitting - Horizontal", "[line_fitting]")
{
std::cout << "\nLine fitting - Horizontal" << std::endl;
double a = 0, b = 10;
std::vector<vpImagePoint> imPts;
for (int i = 0; i < 3; i++) {
double x = i * 10;
imPts.push_back(vpImagePoint(a * x + b, x));
std::cout << "imPts: (" << imPts.back().get_u() << ", " << imPts.back().get_v() << ")" << std::endl;
}
double A = 0, B = 0, C = 0;
double error = vpMath::lineFitting(imPts, A, B, C);
std::cout << "error: " << error << std::endl;
std::cout << "a: " << a << " ; b: " << b << std::endl;
std::cout << "A: " << A << " ; B: " << B << " ; C: " << C << std::endl;
double a_est = 0, b_est = 0;
convertLineEquation(A, B, C, a_est, b_est);
std::cout << "-A/B: " << a_est << " ; -C/B: " << b_est << std::endl;
CHECK(a == Approx(a_est).margin(1e-6));
CHECK(b == Approx(b_est).epsilon(1e-6));
}
TEST_CASE("Line fitting", "[line_fitting]")
{
std::cout << "\nLine fitting" << std::endl;
double a = -4.68, b = 21.456;
std::vector<vpImagePoint> imPts;
const int nbPoints = 10;
for (int i = 0; i < nbPoints; i++) {
double x = i * 10;
double y = a * x + b;
imPts.push_back(vpImagePoint(y, x));
std::cout << "imPts: (" << imPts.back().get_u() << ", " << imPts.back().get_v() << ")" << std::endl;
}
double A = 0, B = 0, C = 0;
double error = vpMath::lineFitting(imPts, A, B, C);
std::cout << "error: " << error << std::endl;
std::cout << "a: " << a << " ; b: " << b << std::endl;
std::cout << "A: " << A << " ; B: " << B << " ; C: " << C << std::endl;
double a_est = 0, b_est = 0;
convertLineEquation(A, B, C, a_est, b_est);
std::cout << "-A/B: " << a_est << " ; -C/B: " << b_est << std::endl;
CHECK(a == Approx(a_est).epsilon(1e-6));
CHECK(b == Approx(b_est).epsilon(1e-6));
}
TEST_CASE("Line fitting - Gaussian noise", "[line_fitting]")
{
std::cout << "\nLine fitting - Gaussian noise" << std::endl;
const double sigma = 3, mean = 0;
vpGaussRand gauss(sigma, mean);
double a = -4.68, b = 21.456;
std::vector<vpImagePoint> imPts;
const int nbPoints = 10;
for (int i = 0; i < nbPoints; i++) {
double x = i * 10;
double y = a * x + b;
imPts.push_back(vpImagePoint(y + gauss(), x + gauss()));
std::cout << "x: " << x << " ; y: " << y << " ; imPts: (" << imPts.back().get_u() << ", " << imPts.back().get_v()
<< ")" << std::endl;
}
double A = 0, B = 0, C = 0;
double error = vpMath::lineFitting(imPts, A, B, C);
std::cout << "error: " << error << std::endl;
std::cout << "a: " << a << " ; b: " << b << std::endl;
std::cout << "A: " << A << " ; B: " << B << " ; C: " << C << std::endl;
double a_est = 0, b_est = 0;
convertLineEquation(A, B, C, a_est, b_est);
std::cout << "-A/B: " << a_est << " ; -C/B: " << b_est << std::endl;
REQUIRE(error < sigma);
}
int main(int argc, char *argv[])
{
Catch::Session session; // There must be exactly one instance
// Let Catch (using Clara) parse the command line
session.applyCommandLine(argc, argv);
int numFailed = session.run();
// numFailed is clamped to 255 as some unices only use the lower 8 bits.
// This clamping has already been applied, so just return it here
// You can also do any post run clean-up here
return numFailed;
}
#else
#include <iostream>
int main() { return EXIT_SUCCESS; }
#endif
Class for generating random number with normal probability density.
Definition: vpGaussRand.h:117
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:82
static double lineFitting(const std::vector< vpImagePoint > &imPts, double &a, double &b, double &c)
Definition: vpMath.cpp:390