Visual Servoing Platform  version 3.6.1 under development (2024-10-02)
testHomogeneousMatrix.cpp

Test some vpHomogeneousMatrix functionalities.

/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Test some vpHomogeneousMatrix functionalities.
*/
#include <visp3/core/vpConfig.h>
#ifdef VISP_HAVE_CATCH2
#include <visp3/core/vpHomogeneousMatrix.h>
#define CATCH_CONFIG_RUNNER
#include <catch.hpp>
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
bool test_matrix_equal(const vpHomogeneousMatrix &M1, const vpHomogeneousMatrix &M2, double epsilon = 1e-10)
{
for (unsigned int i = 0; i < 4; i++) {
for (unsigned int j = 0; j < 4; j++) {
if (!vpMath::equal(M1[i][j], M2[i][j], epsilon)) {
return false;
}
}
}
return true;
}
TEST_CASE("vpHomogeneousMatrix re-orthogonalize rotation matrix", "[vpHomogeneousMatrix]")
{
CHECK_NOTHROW([]() {
vpHomogeneousMatrix M { 0.9835, -0.0581, 0.1716, 0.0072, -0.0489, -0.9972,
-0.0571, 0.0352, 0.1744, 0.0478, -0.9835, 0.9470 };
}());
SECTION("check re-orthogonalize rotation part")
{
vpHomogeneousMatrix M1 { 0.9835, -0.0581, 0.1716, 0.0072, -0.0489, -0.9972,
-0.0571, 0.0352, 0.1744, 0.0478, -0.9835, 0.9470 };
M2[0][0] = 0.9835;
M2[0][1] = -0.0581;
M2[0][2] = 0.1716;
M2[0][3] = 0.0072;
M2[1][0] = -0.0489;
M2[1][1] = -0.9972;
M2[1][2] = -0.0571;
M2[1][3] = 0.0352;
M2[2][0] = 0.1744;
M2[2][1] = 0.0478;
M2[2][2] = -0.9835;
M2[2][3] = 0.9470;
for (unsigned int i = 0; i < 4; i++) {
for (unsigned int j = 0; j < 4; j++) {
CHECK(M1[i][j] == Approx(M2[i][j]).margin(std::numeric_limits<double>::epsilon()));
}
}
}
CHECK_NOTHROW([]() {
vpHomogeneousMatrix M { 0.9835, -0.0581, 0.1716, 0.0072, -0.0937, -0.9738,
0.2072, 0.0481, 0.1551, -0.2199, -0.9631, 0.9583 };
std::cout << "Original data:" << std::endl;
std::cout << "0.9835 -0.0581 0.1716 0.0072" << std::endl;
std::cout << " -0.0937 -0.9738 0.2072 0.0481" << std::endl;
std::cout << "0.1551 -0.2199 -0.9631 0.9583" << std::endl;
std::cout << "0 0 0 1" << std::endl;
std::cout << "M after rotation re-orthogonalization:\n" << M << std::endl;
}());
CHECK_NOTHROW([]() {
vpHomogeneousMatrix M1 { 0.9835, -0.0581, 0.1716, 0.0072, -0.0937, -0.9738,
0.2072, 0.0481, 0.1551, -0.2199, -0.9631, 0.9583 };
// following R init should not throw an exception
vpRotationMatrix R { M1[0][0], M1[0][1], M1[0][2], M1[1][0], M1[1][1], M1[1][2], M1[2][0], M1[2][1], M1[2][2] };
}());
CHECK_THROWS([]() {
vpHomogeneousMatrix M { 0.983, -0.058, 0.171, 0.0072, -0.093, -0.973, 0.207, 0.0481, 0.155, -0.219, -0.963, 0.9583 };
}());
}
TEST_CASE("vpRotationMatrix re-orthogonalize rotation matrix", "[vpRotationMatrix]")
{
CHECK_NOTHROW(
[]() { vpRotationMatrix R { 0.9835, -0.0581, 0.1716, -0.0489, -0.9972, -0.0571, 0.1744, 0.0478, -0.9835 }; }());
CHECK_NOTHROW([]() {
vpRotationMatrix R { 0.9835, -0.0581, 0.1716, -0.0937, -0.9738, 0.2072, 0.1551, -0.2199, -0.9631 };
std::cout << "Original data:" << std::endl;
std::cout << "0.9835 -0.0581 0.1716" << std::endl;
std::cout << " -0.0937 -0.9738 0.2072" << std::endl;
std::cout << "0.1551 -0.2199 -0.9631" << std::endl;
std::cout << "R after rotation re-orthogonalization:\n" << R << std::endl;
}());
CHECK_NOTHROW([]() {
0.46682, -0.74434, 0.47754, -0.83228, -0.55233, -0.04733, 0.29899, -0.37535, -0.87734,
};
std::cout << "Original data:" << std::endl;
std::cout << "0.46682, -0.74434, 0.47754" << std::endl;
std::cout << "-0.83228, -0.55233, -0.04733" << std::endl;
std::cout << "0.29899, -0.37535, -0.87734" << std::endl;
std::cout << "R after rotation re-orthogonalization:\n" << R << std::endl;
}());
CHECK_NOTHROW([]() {
R = {
0.46682, -0.74434, 0.47754, -0.83228, -0.55233, -0.04733, 0.29899, -0.37535, -0.87734,
};
std::cout << "Original data:" << std::endl;
std::cout << "0.46682, -0.74434, 0.47754" << std::endl;
std::cout << "-0.83228, -0.55233, -0.04733" << std::endl;
std::cout << "0.29899, -0.37535, -0.87734" << std::endl;
std::cout << "R after rotation re-orthogonalization:\n" << R << std::endl;
}());
CHECK_THROWS([]() { vpRotationMatrix R { 0.983, -0.058, 0.171, -0.093, -0.973, 0.207, 0.155, -0.219, -0.963 }; }());
}
TEST_CASE("ENU to NED conversion", "[enu2ned]")
{
vpHomogeneousMatrix enu_M_flu { 0, -1, 0, 0.2, 1, 0, 0, 1., 0, 0, 1, 0.3 };
std::cout << "enu_M_flu:\n" << enu_M_flu << std::endl;
vpHomogeneousMatrix enu_M_ned { 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0 };
std::cout << "enu_M_ned:\n" << enu_M_ned << std::endl;
vpHomogeneousMatrix flu_M_frd { 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0 };
std::cout << "flu_M_frd:\n" << flu_M_frd << std::endl;
vpHomogeneousMatrix enu_M_frd = enu_M_flu * flu_M_frd;
// Test1
{
vpHomogeneousMatrix ned_M_frd = enu_M_ned.inverse() * enu_M_flu * flu_M_frd;
std::cout << "ned_M_frd:\n" << ned_M_frd << std::endl;
vpHomogeneousMatrix ned_M_frd_est = vpMath::enu2ned(enu_M_frd);
std::cout << "ned_M_frd_est:\n" << ned_M_frd_est << std::endl;
bool success = test_matrix_equal(ned_M_frd, ned_M_frd_est);
std::cout << "Test enu2ned 1 " << (success ? "succeed" : "failed") << std::endl;
CHECK(success);
}
// Test2
{
vpHomogeneousMatrix ned_M_flu = enu_M_ned.inverse() * enu_M_flu;
std::cout << "ned_M_flu:\n" << ned_M_flu << std::endl;
vpHomogeneousMatrix ned_M_flu_est = vpMath::enu2ned(enu_M_flu);
std::cout << "ned_M_flu_est:\n" << ned_M_flu_est << std::endl;
bool success = test_matrix_equal(ned_M_flu, ned_M_flu_est);
std::cout << "Test enu2ned 2 " << (success ? "succeed" : "failed") << std::endl;
CHECK(success);
}
}
TEST_CASE("vpHomogenousMatrix * vpRotationMatrix", "[operator*]")
{
// Test rotation_matrix * homogeneous_matrix
0.9835, -0.0581, 0.1716, 0.0072,
-0.0489, -0.9972, -0.0571, 0.0352,
0.1744, 0.0478, -0.9835, 0.9470
};
vpHomogeneousMatrix _2_M_3_truth {
0.9835, -0.0581, 0.1716, 0,
-0.0489, -0.9972, -0.0571, 0,
0.1744, 0.0478, -0.9835, 0
};
vpRotationMatrix _2_R_3_ = _2_M_3_truth.getRotationMatrix();
vpHomogeneousMatrix _1_M_3_(_1_M_2_* _2_R_3_);
vpHomogeneousMatrix _1_M_3_truth(_1_M_2_ * _2_M_3_truth);
bool success = test_matrix_equal(_1_M_3_, _1_M_3_truth);
std::cout << "Test vpHomogeneousMatrix vpHomogeneousMatrix::operator*(vpRotationMatrix) " << (success ? "succeed" : "failed") << std::endl;
CHECK(success);
}
int main(int argc, char *argv[])
{
Catch::Session session; // There must be exactly one instance
// Let Catch (using Clara) parse the command line
session.applyCommandLine(argc, argv);
int numFailed = session.run();
// numFailed is clamped to 255 as some unices only use the lower 8 bits.
// This clamping has already been applied, so just return it here
// You can also do any post run clean-up here
return numFailed;
}
#else
#include <iostream>
int main() { return EXIT_SUCCESS; }
#endif
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
static bool equal(double x, double y, double threshold=0.001)
Definition: vpMath.h:459
static vpHomogeneousMatrix enu2ned(const vpHomogeneousMatrix &enu_M)
Definition: vpMath.cpp:774
Implementation of a rotation matrix and operations on such kind of matrices.