Visual Servoing Platform  version 3.6.1 under development (2024-11-15)
moveAfma4.cpp

Example of a real robot control, the Afma4 robot (cylindrical robot, with 4 degrees of freedom). The robot is controlled first in position, then in velocity.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Test for Afma 4 dof robot.
*
*****************************************************************************/
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h>
#ifdef VISP_HAVE_AFMA4
#include <stdlib.h>
#include <unistd.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpRobotAfma4.h>
// List of allowed command line options
#define GETOPTARGS "mh"
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Example of a positioning control followed by a velocity control \n\
of the Afma4 robot.\n\
\n\
SYNOPSIS\n\
%s [-m] [-h]\n\
",
name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-m\n\
Turn off the control of the robot. This option is\n\
essentially useful for security reasons during nightly\n\
tests.\n\
\n\
-h\n\
Print the help.\n\n");
if (badparam) {
fprintf(stderr, "ERROR: \n");
fprintf(stderr, "\nBad parameter [%s]\n", badparam);
}
}
bool getOptions(int argc, const char **argv, bool &control)
{
const char *optarg;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg)) > 1) {
switch (c) {
case 'm':
control = false;
break;
case 'h':
usage(argv[0], nullptr);
return false;
break;
default:
usage(argv[0], optarg);
return false;
break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], nullptr);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
try {
bool control = true; // Turn on the robot control by applying positions
// and velocities to the robot.
// Read the command line options
if (getOptions(argc, argv, control) == false) {
return EXIT_FAILURE;
}
vpRobotAfma4 robot;
vpColVector qd(robot.njoint);
vpColVector q(robot.njoint);
//
// Position control in articular
//
qd[0] = vpMath::rad(10);
qd[1] = -0.1;
qd[2] = vpMath::rad(20);
qd[3] = vpMath::rad(-10);
std::cout << "Position control: in articular..." << std::endl;
std::cout << " position to reach: " << qd.t() << std::endl;
if (control)
robot.setPosition(vpRobot::ARTICULAR_FRAME, qd);
sleep(1);
robot.getPosition(vpRobot::ARTICULAR_FRAME, q);
std::cout << " measured position: " << q.t();
sleep(1);
#if 0
//
// Velocity control in articular
//
std::cout << "Velocity control: in articular..." << std::endl;
q = 0;
q[0] = vpMath::rad(2); // rotation around vertical axis
std::cout << " rotation around vertical axis: " << q[0] << std::endl;
if (control)
sleep(5);
q = 0;
q[1] = 0.2; // Vertical translation
std::cout << " vertical translation: " << q[1] << std::endl;
if (control)
sleep(5);
q = 0;
q[1] = -0.2; // Vertical translation
std::cout << " vertical translation: " << q[1] << std::endl;
if (control)
sleep(5);
q = 0;
q[2] = vpMath::rad(3); // pan
std::cout << " pan rotation: " << q[2] << std::endl;
if (control)
sleep(5);
q = 0;
q[3] = vpMath::rad(2); // tilt
std::cout << " tilt rotation: " << q[3] << std::endl;
if (control)
sleep(5);
#endif
//
// Velocity control in camera frame
//
std::cout << "Velocity control: in camera frame..." << std::endl;
q.resize(6);
q = 0.0;
q[0] = vpMath::rad(2); // rotation around vertical axis
std::cout << " rx rotation: " << q[0] << std::endl;
if (control)
sleep(5);
q.resize(6);
q = 0.0;
q[1] = vpMath::rad(2); // rotation around vertical axis
std::cout << " ry rotation: " << q[1] << std::endl;
if (control)
sleep(5);
std::cout << "The end" << std::endl;
return EXIT_SUCCESS;
}
catch (const vpException &e) {
std::cout << "Catch a ViSP exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have an afma4 robot connected to your computer..." << std::endl;
return EXIT_SUCCESS;
}
#endif
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
error that can be emitted by ViSP classes.
Definition: vpException.h:60
static double rad(double deg)
Definition: vpMath.h:129
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:70
Control of Irisa's cylindrical robot named Afma4.
Definition: vpRobotAfma4.h:177
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
@ ARTICULAR_FRAME
Definition: vpRobot.h:80
@ CAMERA_FRAME
Definition: vpRobot.h:84
@ STATE_POSITION_CONTROL
Initialize the position controller.
Definition: vpRobot.h:68
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:67
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:202