Visual Servoing Platform  version 3.6.1 under development (2024-11-15)
catchMatrixCholesky.cpp
1 /*
2  * ViSP, open source Visual Servoing Platform software.
3  * Copyright (C) 2005 - 2024 by Inria. All rights reserved.
4  *
5  * This software is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  * See the file LICENSE.txt at the root directory of this source
10  * distribution for additional information about the GNU GPL.
11  *
12  * For using ViSP with software that can not be combined with the GNU
13  * GPL, please contact Inria about acquiring a ViSP Professional
14  * Edition License.
15  *
16  * See https://visp.inria.fr for more information.
17  *
18  * This software was developed at:
19  * Inria Rennes - Bretagne Atlantique
20  * Campus Universitaire de Beaulieu
21  * 35042 Rennes Cedex
22  * France
23  *
24  * If you have questions regarding the use of this file, please contact
25  * Inria at visp@inria.fr
26  *
27  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
28  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
29  *
30  * Description:
31  * Test matrix condition number.
32  */
33 
39 #include <visp3/core/vpConfig.h>
40 
41 #if defined(VISP_HAVE_CATCH2)
42 #include <iostream>
43 #include <stdlib.h>
44 #include <visp3/core/vpMatrix.h>
45 
46 #include <catch_amalgamated.hpp>
47 
48 #ifdef ENABLE_VISP_NAMESPACE
49 using namespace VISP_NAMESPACE_NAME;
50 #endif
51 
52 bool equal(const vpMatrix &A, const vpMatrix &B)
53 {
54  unsigned int rowsA = A.getRows(), rowsB = B.getRows();
55  unsigned int colsA = A.getCols(), colsB = B.getCols();
56  bool areEqual = (rowsA == rowsB) && (colsA == colsB);
57 
58  if (!areEqual) {
59  return false;
60  }
61 
62  for (unsigned int r = 0; r < rowsA; ++r) {
63  for (unsigned int c = 0; c < colsA; ++c) {
64  areEqual = areEqual && vpMath::equal(A[r][c], B[r][c]);
65  if (!areEqual) {
66  return false;
67  }
68  }
69  }
70  return areEqual;
71 }
72 
73 bool testCholeskyDecomposition(const vpMatrix &M, const vpMatrix &gtResult, const vpMatrix &result,
74  const std::string &title, const bool &verbose)
75 {
76  if (verbose) {
77  std::cout << "-------------------------" << std::endl;
78  std::cout << "Test: " << title << std::endl;
79  std::cout << std::endl;
80  }
81  unsigned int gtRows = gtResult.getRows(), resRows = result.getRows();
82  unsigned int gtCols = gtResult.getCols(), resCols = result.getCols();
83  bool areEqual = (gtRows == resRows) && (gtCols == resCols);
84  if (!areEqual) {
85  if (verbose) {
86  std::cout << "Failed: dimensions mismatch (" << gtRows << " x " << gtCols << ")";
87  std::cout << " vs (" << resRows << " x " << resCols << ")" << std::endl;
88  }
89  return false;
90  }
91 
92  areEqual = equal(gtResult, result);
93 
94  if ((!areEqual) && verbose) {
95  std::cout << "Failed: L matrices differ." << std::endl;
96  std::cout << "Result =\n" << result << std::endl;
97  std::cout << "GT =\n" << gtResult << std::endl;
98  return false;
99  }
100 
101  vpMatrix LLt = result * result.transpose();
102  areEqual = equal(M, LLt);
103 
104  if ((!areEqual) && verbose) {
105  std::cout << "Failed: LL^T differ from M." << std::endl;
106  std::cout << "LL^T =\n" << LLt << std::endl;
107  std::cout << "GT M =\n" << M << std::endl;
108  }
109  if (areEqual && verbose) {
110  std::cout << "Test " << title << " succeeded" << std::endl;
111  }
112 
113  return areEqual;
114 }
115 
116 
117 TEST_CASE("3 x 3 input", "[cholesky]")
118 {
119  vpMatrix M(3, 3);
120  M[0][0] = 4; M[0][1] = 12; M[0][2] = -16;
121  M[1][0] = 12; M[1][1] = 37; M[1][2] = -43;
122  M[2][0] = -16; M[2][1] = -43; M[2][2] = 98;
123 
124  vpMatrix gtL(3, 3, 0.);
125  gtL[0][0] = 2; // M[0][1] = 0; M[0][2] = 0;
126  gtL[1][0] = 6; gtL[1][1] = 1; // M[1][2] = 0;
127  gtL[2][0] = -8; gtL[2][1] = 5; gtL[2][2] = 3;
128 
129 #if defined(VISP_HAVE_LAPACK)
130  SECTION("LAPACK")
131  {
132  vpMatrix L = M.choleskyByLapack();
133  CHECK(testCholeskyDecomposition(M, gtL, L, "Test Cholesky's decomposition using Lapack", true));
134  }
135 #endif
136 
137 #if defined(VISP_HAVE_EIGEN3)
138  SECTION("EIGEN3")
139  {
140  vpMatrix L = M.choleskyByEigen3();
141  CHECK(testCholeskyDecomposition(M, gtL, L, "Test Cholesky's decomposition using Eigen3", true));
142  }
143 #endif
144 
145 // There is a bug with OpenCV 3.1.0
146 // See https://answers.opencv.org/question/99704/cholesky-function-in-opencv/
147 #if defined(VISP_HAVE_OPENCV) && (VISP_HAVE_OPENCV_VERSION != 0x030100)
148  SECTION("OPENCV")
149  {
150  vpMatrix L = M.choleskyByOpenCV();
151  CHECK(testCholeskyDecomposition(M, gtL, L, "Test Cholesky's decomposition using OpenCV", true));
152  }
153 #endif
154 }
155 
156 TEST_CASE("4 x 4 input", "[cholesky]")
157 {
158  vpMatrix M(4, 4);
159  M[0][0] = 4.16; M[0][1] = -3.12; M[0][2] = 0.56; M[0][3] = -0.10;
160  M[1][0] = -3.12; M[1][1] = 5.03; M[1][2] = -0.83; M[1][3] = 1.18;
161  M[2][0] = 0.56; M[2][1] = -0.83; M[2][2] = 0.76; M[2][3] = 0.34;
162  M[3][0] = -0.10; M[3][1] = 1.18; M[3][2] = 0.34; M[3][3] = 1.18;
163 
164  vpMatrix gtL(4, 4, 0.);
165  gtL[0][0] = 2.0396;
166  gtL[1][0] = -1.5297; gtL[1][1] = 1.6401;
167  gtL[2][0] = 0.2746; gtL[2][1] = -0.2500; gtL[2][2] = 0.7887;
168  gtL[3][0] = -0.0490; gtL[3][1] = 0.6737; gtL[3][2] = 0.6617; gtL[3][3] = 0.5347;
169 
170 #if defined(VISP_HAVE_LAPACK)
171  SECTION("LAPACK")
172  {
173  vpMatrix L = M.choleskyByLapack();
174  CHECK(testCholeskyDecomposition(M, gtL, L, "Test Cholesky's decomposition using Lapack", true));
175  }
176 #endif
177 
178 #if defined(VISP_HAVE_EIGEN3)
179  SECTION("EIGEN3")
180  {
181  vpMatrix L = M.choleskyByEigen3();
182  CHECK(testCholeskyDecomposition(M, gtL, L, "Test Cholesky's decomposition using Eigen3", true));
183  }
184 #endif
185 
186 // There is a bug with OpenCV 3.1.0
187 // See https://answers.opencv.org/question/99704/cholesky-function-in-opencv/
188 #if defined(VISP_HAVE_OPENCV) && (VISP_HAVE_OPENCV_VERSION != 0x030100)
189  SECTION("OPENCV")
190  {
191  vpMatrix L = M.choleskyByOpenCV();
192  CHECK(testCholeskyDecomposition(M, gtL, L, "Test Cholesky's decomposition using OpenCV", true));
193  }
194 #endif
195 }
196 
197 int main(int argc, char *argv[])
198 {
199  Catch::Session session;
200  session.applyCommandLine(argc, argv);
201  int numFailed = session.run();
202  return numFailed;
203 }
204 #else
205 #include <iostream>
206 
207 int main()
208 {
209  std::cout << "Test ignored: Catch2 is not available" << std::endl;
210  return EXIT_SUCCESS;
211 }
212 #endif
unsigned int getCols() const
Definition: vpArray2D.h:337
unsigned int getRows() const
Definition: vpArray2D.h:347
static bool equal(double x, double y, double threshold=0.001)
Definition: vpMath.h:459
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:169
vpMatrix choleskyByOpenCV() const
Compute the Cholesky decomposition of a Hermitian positive-definite matrix using OpenCV library.
vpMatrix choleskyByEigen3() const
Compute the Cholesky decomposition of a Hermitian positive-definite matrix using Eigen3 library.
vpMatrix choleskyByLapack() const
Compute the Cholesky decomposition of a Hermitian positive-definite matrix using Lapack library.
vpMatrix transpose() const