Visual Servoing Platform  version 3.5.1 under development (2023-09-22)
vpThetaUVector.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See https://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Theta U parameterization for the rotation.
33  *
34 *****************************************************************************/
35 
42 #include <cmath> // std::fabs
43 #include <limits> // numeric_limits
44 
45 #include <visp3/core/vpThetaUVector.h>
46 
47 const double vpThetaUVector::minimum = 0.0001;
48 
67 
84 
101 vpThetaUVector::vpThetaUVector(double tux, double tuy, double tuz) : vpRotationVector(3) { buildFrom(tux, tuy, tuz); }
102 
106 vpThetaUVector::vpThetaUVector(const std::vector<double> &tu) { buildFrom(tu); }
107 
112 {
114 
115  M.extract(R);
116  buildFrom(R);
117 
118  return *this;
119 }
125 {
126  for (unsigned int i = 0; i < 3; i++)
127  data[i] = p[i + 3];
128 
129  return *this;
130 }
131 
136 {
137  double s, c, theta;
138 
139  s = (R[1][0] - R[0][1]) * (R[1][0] - R[0][1]) + (R[2][0] - R[0][2]) * (R[2][0] - R[0][2]) +
140  (R[2][1] - R[1][2]) * (R[2][1] - R[1][2]);
141  s = sqrt(s) / 2.0;
142  c = (R[0][0] + R[1][1] + R[2][2] - 1.0) / 2.0;
143  theta = atan2(s, c); /* theta in [0, PI] since s > 0 */
144 
145  // General case when theta != pi. If theta=pi, c=-1
146  if ((1 + c) > minimum) // Since -1 <= c <= 1, no fabs(1+c) is required
147  {
148  double sinc = vpMath::sinc(s, theta);
149 
150  data[0] = (R[2][1] - R[1][2]) / (2 * sinc);
151  data[1] = (R[0][2] - R[2][0]) / (2 * sinc);
152  data[2] = (R[1][0] - R[0][1]) / (2 * sinc);
153  } else /* theta near PI */
154  {
155  double x = 0;
156  if ((R[0][0] - c) > std::numeric_limits<double>::epsilon())
157  x = sqrt((R[0][0] - c) / (1 - c));
158 
159  double y = 0;
160  if ((R[1][1] - c) > std::numeric_limits<double>::epsilon())
161  y = sqrt((R[1][1] - c) / (1 - c));
162 
163  double z = 0;
164  if ((R[2][2] - c) > std::numeric_limits<double>::epsilon())
165  z = sqrt((R[2][2] - c) / (1 - c));
166 
167  if (x > y && x > z) {
168  if ((R[2][1] - R[1][2]) < 0)
169  x = -x;
170  if (vpMath::sign(x) * vpMath::sign(y) != vpMath::sign(R[0][1] + R[1][0]))
171  y = -y;
172  if (vpMath::sign(x) * vpMath::sign(z) != vpMath::sign(R[0][2] + R[2][0]))
173  z = -z;
174  } else if (y > z) {
175  if ((R[0][2] - R[2][0]) < 0)
176  y = -y;
177  if (vpMath::sign(y) * vpMath::sign(x) != vpMath::sign(R[1][0] + R[0][1]))
178  x = -x;
179  if (vpMath::sign(y) * vpMath::sign(z) != vpMath::sign(R[1][2] + R[2][1]))
180  z = -z;
181  } else {
182  if ((R[1][0] - R[0][1]) < 0)
183  z = -z;
184  if (vpMath::sign(z) * vpMath::sign(x) != vpMath::sign(R[2][0] + R[0][2]))
185  x = -x;
186  if (vpMath::sign(z) * vpMath::sign(y) != vpMath::sign(R[2][1] + R[1][2]))
187  y = -y;
188  }
189  data[0] = theta * x;
190  data[1] = theta * y;
191  data[2] = theta * z;
192  }
193 
194  return *this;
195 }
200 {
201  vpRotationMatrix R(rzyx);
202 
203  buildFrom(R);
204  return *this;
205 }
210 {
211  vpRotationMatrix R(rzyz);
212 
213  buildFrom(R);
214  return *this;
215 }
220 {
221  vpRotationMatrix R(rxyz);
222 
223  buildFrom(R);
224  return *this;
225 }
226 
231 {
232  vpRotationMatrix R(q);
233 
234  buildFrom(R);
235  return *this;
236 }
237 
241 vpThetaUVector vpThetaUVector::buildFrom(const std::vector<double> &tu)
242 {
243  if (tu.size() != 3) {
244  throw(vpException(vpException::dimensionError, "Cannot construct a theta-u vector from a %d-dimension std::vector",
245  tu.size()));
246  }
247  for (unsigned int i = 0; i < 3; i++)
248  data[i] = tu[i];
249 
250  return *this;
251 }
252 
257 {
258  if (tu.size() != 3) {
259  throw(vpException(vpException::dimensionError, "Cannot construct a theta-u vector from a %d-dimension std::vector",
260  tu.size()));
261  }
262  for (unsigned int i = 0; i < 3; i++)
263  data[i] = tu[i];
264 
265  return *this;
266 }
267 
290 {
291  for (unsigned int i = 0; i < dsize; i++)
292  data[i] = v;
293 
294  return *this;
295 }
296 
321 {
322  if (tu.size() != size()) {
323  throw(vpException(vpException::dimensionError, "Cannot set a theta-u vector from a %d-dimension col vector",
324  tu.size()));
325  }
326  for (unsigned int i = 0; i < size(); i++)
327  data[i] = tu[i];
328 
329  return *this;
330 }
331 
360 void vpThetaUVector::extract(double &theta, vpColVector &u) const
361 {
362  u.resize(3);
363 
364  theta = getTheta();
365  // if (theta == 0) {
366  if (std::fabs(theta) <= std::numeric_limits<double>::epsilon()) {
367  u = 0;
368  return;
369  }
370  for (unsigned int i = 0; i < 3; i++)
371  u[i] = data[i] / theta;
372 }
373 
396 double vpThetaUVector::getTheta() const { return sqrt(data[0] * data[0] + data[1] * data[1] + data[2] * data[2]); }
397 
422 {
423  vpColVector u(3);
424 
425  double theta = getTheta();
426  // if (theta == 0) {
427  if (std::fabs(theta) <= std::numeric_limits<double>::epsilon()) {
428  u = 0;
429  return u;
430  }
431  for (unsigned int i = 0; i < 3; i++)
432  u[i] = data[i] / theta;
433  return u;
434 }
435 
439 void vpThetaUVector::buildFrom(double tux, double tuy, double tuz)
440 {
441  data[0] = tux;
442  data[1] = tuy;
443  data[2] = tuz;
444 }
445 
451 {
452  double a_2 = getTheta() / 2;
453  vpColVector a_hat = getU();
454  double b_2 = tu_b.getTheta() / 2;
455  vpColVector b_hat = tu_b.getU();
456 
457  vpColVector a_hat_sin_2 = a_hat * std::sin(a_2);
458  vpColVector b_hat_sin_2 = b_hat * std::sin(b_2);
459  double c = 2 * std::acos(std::cos(a_2) * std::cos(b_2) - vpColVector::dotProd(a_hat_sin_2, b_hat_sin_2));
460  vpColVector d = std::sin(a_2) * std::cos(b_2) * a_hat + std::cos(a_2) * std::sin(b_2) * b_hat +
461  std::sin(a_2) * std::sin(b_2) * vpColVector::crossProd(a_hat, b_hat);
462  d = c * d / std::sin(c / 2);
463 
464  return vpThetaUVector(d);
465 }
466 
467 #if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
485 vpThetaUVector &vpThetaUVector::operator=(const std::initializer_list<double> &list)
486 {
487  if (list.size() > size()) {
488  throw(vpException(
490  "Cannot set theta u vector out of bounds. It has only %d values while you try to initialize with %d values",
491  size(), list.size()));
492  }
493  std::copy(list.begin(), list.end(), data);
494  return *this;
495 }
496 #endif
double * data
Address of the first element of the data array.
Definition: vpArray2D.h:144
unsigned int dsize
Current array size (rowNum * colNum)
Definition: vpArray2D.h:140
unsigned int size() const
Return the number of elements of the 2D array.
Definition: vpArray2D.h:292
Implementation of column vector and the associated operations.
Definition: vpColVector.h:167
static double dotProd(const vpColVector &a, const vpColVector &b)
static vpColVector crossProd(const vpColVector &a, const vpColVector &b)
void resize(unsigned int i, bool flagNullify=true)
Definition: vpColVector.h:351
error that can be emitted by ViSP classes.
Definition: vpException.h:59
@ dimensionError
Bad dimension.
Definition: vpException.h:83
Implementation of an homogeneous matrix and operations on such kind of matrices.
void extract(vpRotationMatrix &R) const
static double sinc(double x)
Definition: vpMath.cpp:264
static int sign(double x)
Definition: vpMath.h:342
Implementation of a pose vector and operations on poses.
Definition: vpPoseVector.h:192
Implementation of a rotation vector as quaternion angle minimal representation.
Implementation of a rotation matrix and operations on such kind of matrices.
Implementation of a generic rotation vector.
Implementation of a rotation vector as Euler angle minimal representation.
Definition: vpRxyzVector.h:178
Implementation of a rotation vector as Euler angle minimal representation.
Definition: vpRzyxVector.h:180
Implementation of a rotation vector as Euler angle minimal representation.
Definition: vpRzyzVector.h:177
Implementation of a rotation vector as axis-angle minimal representation.
vpThetaUVector operator*(const vpThetaUVector &tu_b) const
vpColVector getU() const
vpThetaUVector buildFrom(const vpRzyxVector &rzyx)
void extract(double &theta, vpColVector &u) const
vpThetaUVector buildFrom(const vpHomogeneousMatrix &M)
vpThetaUVector & operator=(const vpColVector &tu)
double getTheta() const