Visual Servoing Platform  version 3.5.1 under development (2023-09-22)
vpMbtDistanceLine.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See https://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Make the complete tracking of an object by using its CAD model
33  *
34  * Authors:
35  * Romain Tallonneau
36  *
37 *****************************************************************************/
38 #include <visp3/core/vpConfig.h>
39 
45 #include <stdlib.h>
46 #include <visp3/core/vpMeterPixelConversion.h>
47 #include <visp3/core/vpPlane.h>
48 #include <visp3/mbt/vpMbtDistanceLine.h>
49 #include <visp3/visual_features/vpFeatureBuilder.h>
50 
51 void buildPlane(vpPoint &P, vpPoint &Q, vpPoint &R, vpPlane &plane);
52 void buildLine(vpPoint &P1, vpPoint &P2, vpPoint &P3, vpPoint &P4, vpLine &L);
53 
58  : name(), index(0), cam(), me(NULL), isTrackedLine(true), isTrackedLineWithVisibility(true), wmean(1), featureline(),
59  poly(), useScanLine(false), meline(), line(NULL), p1(NULL), p2(NULL), L(), error(), nbFeature(), nbFeatureTotal(0),
60  Reinit(false), hiddenface(NULL), Lindex_polygon(), Lindex_polygon_tracked(), isvisible(false)
61 {
62 }
63 
68 {
69  if (line != NULL)
70  delete line;
71 
72  for (unsigned int i = 0; i < meline.size(); i++)
73  if (meline[i] != NULL)
74  delete meline[i];
75 
76  meline.clear();
77 }
78 
85 void vpMbtDistanceLine::project(const vpHomogeneousMatrix &cMo)
86 {
87  line->project(cMo);
88  p1->project(cMo);
89  p2->project(cMo);
90 }
91 
101 void buildPlane(vpPoint &P, vpPoint &Q, vpPoint &R, vpPlane &plane)
102 {
103  vpColVector a(3);
104  vpColVector b(3);
105 
106  // Calculate vector corresponding to PQ
107  a[0] = P.get_oX() - Q.get_oX();
108  a[1] = P.get_oY() - Q.get_oY();
109  a[2] = P.get_oZ() - Q.get_oZ();
110 
111  // Calculate vector corresponding to PR
112  b[0] = P.get_oX() - R.get_oX();
113  b[1] = P.get_oY() - R.get_oY();
114  b[2] = P.get_oZ() - R.get_oZ();
115 
116  // Calculate normal vector to plane PQ x PR
118 
119  // Equation of the plane is given by:
120  double A = n[0];
121  double B = n[1];
122  double C = n[2];
123  double D = -(A * P.get_oX() + B * P.get_oY() + C * P.get_oZ());
124 
125  double norm = sqrt(A * A + B * B + C * C);
126  plane.setA(A / norm);
127  plane.setB(B / norm);
128  plane.setC(C / norm);
129  plane.setD(D / norm);
130 }
131 
145 void buildLine(vpPoint &P1, vpPoint &P2, vpPoint &P3, vpPoint &P4, vpLine &L)
146 {
147  vpPlane plane1;
148  vpPlane plane2;
149  buildPlane(P1, P2, P3, plane1);
150  buildPlane(P1, P2, P4, plane2);
151 
152  L.setWorldCoordinates(plane1.getA(), plane1.getB(), plane1.getC(), plane1.getD(), plane2.getA(), plane2.getB(),
153  plane2.getC(), plane2.getD());
154 }
155 
165 {
166  if (line == NULL) {
167  line = new vpLine;
168  }
169 
170  poly.setNbPoint(2);
171  poly.addPoint(0, _p1);
172  poly.addPoint(1, _p2);
173 
174  p1 = &poly.p[0];
175  p2 = &poly.p[1];
176 
177  vpColVector V1(3);
178  vpColVector V2(3);
179 
180  V1[0] = p1->get_oX();
181  V1[1] = p1->get_oY();
182  V1[2] = p1->get_oZ();
183  V2[0] = p2->get_oX();
184  V2[1] = p2->get_oY();
185  V2[2] = p2->get_oZ();
186 
187  // if((V1-V2).sumSquare()!=0)
188  if (std::fabs((V1 - V2).sumSquare()) > std::numeric_limits<double>::epsilon()) {
189  vpColVector V3(3);
190  V3[0] = double(rand_gen.next() % 1000) / 100;
191  V3[1] = double(rand_gen.next() % 1000) / 100;
192  V3[2] = double(rand_gen.next() % 1000) / 100;
193 
194  vpColVector v_tmp1, v_tmp2;
195  v_tmp1 = V2 - V1;
196  v_tmp2 = V3 - V1;
197  vpColVector V4 = vpColVector::cross(v_tmp1, v_tmp2);
198 
199  vpPoint P3(V3[0], V3[1], V3[2]);
200  vpPoint P4(V4[0], V4[1], V4[2]);
201  buildLine(*p1, *p2, P3, P4, *line);
202  } else {
203  vpPoint P3(V1[0], V1[1], V1[2]);
204  vpPoint P4(V2[0], V2[1], V2[2]);
205  buildLine(*p1, *p2, P3, P4, *line);
206  }
207 }
208 
214 void vpMbtDistanceLine::addPolygon(const int &idx)
215 {
216  Lindex_polygon.push_back(idx);
217  Lindex_polygon_tracked.push_back(true);
218 }
219 
227 void vpMbtDistanceLine::setTracked(const std::string &polyname, const bool &track)
228 {
229  unsigned int ind = 0;
230  for (std::list<int>::const_iterator itpoly = Lindex_polygon.begin(); itpoly != Lindex_polygon.end(); ++itpoly) {
231  if ((*hiddenface)[(unsigned)(*itpoly)]->getName() == polyname) {
232  Lindex_polygon_tracked[ind] = track;
233  }
234  ind++;
235  }
236 
237  isTrackedLine = false;
238  for (unsigned int i = 0; i < Lindex_polygon_tracked.size(); i++)
239  if (Lindex_polygon_tracked[i]) {
240  isTrackedLine = true;
241  break;
242  }
243 
244  if (!isTrackedLine) {
245  isTrackedLineWithVisibility = false;
246  return;
247  }
248 
249  updateTracked();
250 }
251 
257 {
258  if (!isTrackedLine) {
259  isTrackedLineWithVisibility = false;
260  return;
261  }
262 
263  unsigned int ind = 0;
264  isTrackedLineWithVisibility = false;
265  for (std::list<int>::const_iterator itpoly = Lindex_polygon.begin(); itpoly != Lindex_polygon.end(); ++itpoly) {
266  if ((*hiddenface)[(unsigned)(*itpoly)]->isVisible() && Lindex_polygon_tracked[ind]) {
267  isTrackedLineWithVisibility = true;
268  break;
269  }
270  ind++;
271  }
272 }
273 
280 {
281  me = _me;
282 
283  for (unsigned int i = 0; i < meline.size(); i++)
284  if (meline[i] != NULL) {
285  // nbFeature[i] = 0;
286  meline[i]->reset();
287  meline[i]->setMe(me);
288  }
289 
290  // nbFeatureTotal = 0;
291 }
292 
305  const vpImage<bool> *mask)
306 {
307  for (unsigned int i = 0; i < meline.size(); i++) {
308  if (meline[i] != NULL)
309  delete meline[i];
310  }
311 
312  meline.clear();
313  nbFeature.clear();
314  nbFeatureTotal = 0;
315 
316  if (isvisible) {
317  p1->changeFrame(cMo);
318  p2->changeFrame(cMo);
319 
320  if (poly.getClipping() > 3) // Contains at least one FOV constraint
321  cam.computeFov(I.getWidth(), I.getHeight());
322 
323  poly.computePolygonClipped(cam);
324 
325  if (poly.polyClipped.size() == 2) { // Les points sont visibles.
326 
327  std::vector<std::pair<vpPoint, vpPoint> > linesLst;
328 
329  if (useScanLine) {
330  hiddenface->computeScanLineQuery(poly.polyClipped[0].first, poly.polyClipped[1].first, linesLst);
331  } else {
332  linesLst.push_back(std::make_pair(poly.polyClipped[0].first, poly.polyClipped[1].first));
333  }
334 
335  if (linesLst.size() == 0) {
336  return false;
337  }
338 
339  line->changeFrame(cMo);
340  try {
341  line->projection();
342  } catch (...) {
343  isvisible = false;
344  return false;
345  }
346  double rho, theta;
347  // rho theta uv
349 
350  while (theta > M_PI) {
351  theta -= M_PI;
352  }
353  while (theta < -M_PI) {
354  theta += M_PI;
355  }
356 
357  if (theta < -M_PI / 2.0)
358  theta = -theta - 3 * M_PI / 2.0;
359  else
360  theta = M_PI / 2.0 - theta;
361 
362  for (unsigned int i = 0; i < linesLst.size(); i++) {
363  vpImagePoint ip1, ip2;
364 
365  linesLst[i].first.project();
366  linesLst[i].second.project();
367 
368  vpMeterPixelConversion::convertPoint(cam, linesLst[i].first.get_x(), linesLst[i].first.get_y(), ip1);
369  vpMeterPixelConversion::convertPoint(cam, linesLst[i].second.get_x(), linesLst[i].second.get_y(), ip2);
370 
371  vpMbtMeLine *melinePt = new vpMbtMeLine;
372  melinePt->setMask(*mask);
373  melinePt->setMe(me);
374 
375  melinePt->setInitRange(0);
376 
377  int marge = /*10*/ 5; // ou 5 normalement
378  if (ip1.get_j() < ip2.get_j()) {
379  melinePt->jmin = (int)ip1.get_j() - marge;
380  melinePt->jmax = (int)ip2.get_j() + marge;
381  } else {
382  melinePt->jmin = (int)ip2.get_j() - marge;
383  melinePt->jmax = (int)ip1.get_j() + marge;
384  }
385  if (ip1.get_i() < ip2.get_i()) {
386  melinePt->imin = (int)ip1.get_i() - marge;
387  melinePt->imax = (int)ip2.get_i() + marge;
388  } else {
389  melinePt->imin = (int)ip2.get_i() - marge;
390  melinePt->imax = (int)ip1.get_i() + marge;
391  }
392 
393  try {
394  melinePt->initTracking(I, ip1, ip2, rho, theta, doNotTrack);
395  meline.push_back(melinePt);
396  nbFeature.push_back((unsigned int)melinePt->getMeList().size());
397  nbFeatureTotal += nbFeature.back();
398  } catch (...) {
399  delete melinePt;
400  isvisible = false;
401  return false;
402  }
403  }
404  } else {
405  isvisible = false;
406  }
407  }
408 
409  return true;
410 }
411 
418 {
419  if (isvisible) {
420  try {
421  nbFeature.clear();
422  nbFeatureTotal = 0;
423  for (size_t i = 0; i < meline.size(); i++) {
424  meline[i]->track(I);
425  nbFeature.push_back((unsigned int)meline[i]->getMeList().size());
426  nbFeatureTotal += (unsigned int)meline[i]->getMeList().size();
427  }
428  } catch (...) {
429  for (size_t i = 0; i < meline.size(); i++) {
430  if (meline[i] != NULL)
431  delete meline[i];
432  }
433 
434  nbFeature.clear();
435  meline.clear();
436  nbFeatureTotal = 0;
437  Reinit = true;
438  isvisible = false;
439  }
440  }
441 }
442 
450 {
451  if (isvisible) {
452  p1->changeFrame(cMo);
453  p2->changeFrame(cMo);
454 
455  if (poly.getClipping() > 3) // Contains at least one FOV constraint
456  cam.computeFov(I.getWidth(), I.getHeight());
457 
458  poly.computePolygonClipped(cam);
459 
460  if (poly.polyClipped.size() == 2) { // Les points sont visibles.
461 
462  std::vector<std::pair<vpPoint, vpPoint> > linesLst;
463 
464  if (useScanLine) {
465  hiddenface->computeScanLineQuery(poly.polyClipped[0].first, poly.polyClipped[1].first, linesLst);
466  } else {
467  linesLst.push_back(std::make_pair(poly.polyClipped[0].first, poly.polyClipped[1].first));
468  }
469 
470  if (linesLst.size() != meline.size() || linesLst.size() == 0) {
471  for (size_t i = 0; i < meline.size(); i++) {
472  if (meline[i] != NULL)
473  delete meline[i];
474  }
475 
476  meline.clear();
477  nbFeature.clear();
478  nbFeatureTotal = 0;
479  isvisible = false;
480  Reinit = true;
481  } else {
482  line->changeFrame(cMo);
483  try {
484  line->projection();
485  } catch (...) {
486  for (size_t j = 0; j < meline.size(); j++) {
487  if (meline[j] != NULL)
488  delete meline[j];
489  }
490 
491  meline.clear();
492  nbFeature.clear();
493  nbFeatureTotal = 0;
494  isvisible = false;
495  Reinit = true;
496  return;
497  }
498  double rho, theta;
499  // rho theta uv
501 
502  while (theta > M_PI) {
503  theta -= M_PI;
504  }
505  while (theta < -M_PI) {
506  theta += M_PI;
507  }
508 
509  if (theta < -M_PI / 2.0)
510  theta = -theta - 3 * M_PI / 2.0;
511  else
512  theta = M_PI / 2.0 - theta;
513 
514  try {
515  for (unsigned int i = 0; i < linesLst.size(); i++) {
516  vpImagePoint ip1, ip2;
517 
518  linesLst[i].first.project();
519  linesLst[i].second.project();
520 
521  vpMeterPixelConversion::convertPoint(cam, linesLst[i].first.get_x(), linesLst[i].first.get_y(), ip1);
522  vpMeterPixelConversion::convertPoint(cam, linesLst[i].second.get_x(), linesLst[i].second.get_y(), ip2);
523 
524  int marge = /*10*/ 5; // ou 5 normalement
525  if (ip1.get_j() < ip2.get_j()) {
526  meline[i]->jmin = (int)ip1.get_j() - marge;
527  meline[i]->jmax = (int)ip2.get_j() + marge;
528  } else {
529  meline[i]->jmin = (int)ip2.get_j() - marge;
530  meline[i]->jmax = (int)ip1.get_j() + marge;
531  }
532  if (ip1.get_i() < ip2.get_i()) {
533  meline[i]->imin = (int)ip1.get_i() - marge;
534  meline[i]->imax = (int)ip2.get_i() + marge;
535  } else {
536  meline[i]->imin = (int)ip2.get_i() - marge;
537  meline[i]->imax = (int)ip1.get_i() + marge;
538  }
539 
540  meline[i]->updateParameters(I, ip1, ip2, rho, theta);
541  nbFeature[i] = (unsigned int)meline[i]->getMeList().size();
543  }
544  } catch (...) {
545  for (size_t j = 0; j < meline.size(); j++) {
546  if (meline[j] != NULL)
547  delete meline[j];
548  }
549 
550  meline.clear();
551  nbFeature.clear();
552  nbFeatureTotal = 0;
553  isvisible = false;
554  Reinit = true;
555  }
556  }
557  } else {
558  for (size_t i = 0; i < meline.size(); i++) {
559  if (meline[i] != NULL)
560  delete meline[i];
561  }
562  nbFeature.clear();
563  meline.clear();
564  nbFeatureTotal = 0;
565  isvisible = false;
566  }
567  }
568 }
569 
582  const vpImage<bool> *mask)
583 {
584  for (size_t i = 0; i < meline.size(); i++) {
585  if (meline[i] != NULL)
586  delete meline[i];
587  }
588 
589  nbFeature.clear();
590  meline.clear();
591  nbFeatureTotal = 0;
592 
593  if (!initMovingEdge(I, cMo, false, mask))
594  Reinit = true;
595 
596  Reinit = false;
597 }
598 
611  const vpCameraParameters &camera, const vpColor &col, unsigned int thickness,
612  bool displayFullModel)
613 {
614  std::vector<std::vector<double> > models =
615  getModelForDisplay(I.getWidth(), I.getHeight(), cMo, camera, displayFullModel);
616 
617  for (size_t i = 0; i < models.size(); i++) {
618  vpImagePoint ip1(models[i][1], models[i][2]);
619  vpImagePoint ip2(models[i][3], models[i][4]);
620  vpDisplay::displayLine(I, ip1, ip2, col, thickness);
621  }
622 }
623 
636  const vpCameraParameters &camera, const vpColor &col, unsigned int thickness,
637  bool displayFullModel)
638 {
639  std::vector<std::vector<double> > models =
640  getModelForDisplay(I.getWidth(), I.getHeight(), cMo, camera, displayFullModel);
641 
642  for (size_t i = 0; i < models.size(); i++) {
643  vpImagePoint ip1(models[i][1], models[i][2]);
644  vpImagePoint ip2(models[i][3], models[i][4]);
645  vpDisplay::displayLine(I, ip1, ip2, col, thickness);
646  }
647 }
648 
664 {
665  for (size_t i = 0; i < meline.size(); i++) {
666  if (meline[i] != NULL) {
667  meline[i]->display(I);
668  }
669  }
670 }
671 
673 {
674  for (size_t i = 0; i < meline.size(); i++) {
675  if (meline[i] != NULL) {
676  meline[i]->display(I);
677  }
678  }
679 }
680 
685 std::vector<std::vector<double> > vpMbtDistanceLine::getFeaturesForDisplay()
686 {
687  std::vector<std::vector<double> > features;
688 
689  for (size_t i = 0; i < meline.size(); i++) {
690  vpMbtMeLine *me_l = meline[i];
691  if (me_l != NULL) {
692  for (std::list<vpMeSite>::const_iterator it = me_l->getMeList().begin(); it != me_l->getMeList().end(); ++it) {
693  vpMeSite p_me_l = *it;
694 #if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
695  std::vector<double> params = {0, // ME
696  p_me_l.get_ifloat(), p_me_l.get_jfloat(), static_cast<double>(p_me_l.getState())};
697 #else
698  std::vector<double> params;
699  params.push_back(0); // ME
700  params.push_back(p_me_l.get_ifloat());
701  params.push_back(p_me_l.get_jfloat());
702  params.push_back(static_cast<double>(p_me_l.getState()));
703 #endif
704  features.push_back(params);
705  }
706  }
707  }
708 
709  return features;
710 }
711 
723 std::vector<std::vector<double> > vpMbtDistanceLine::getModelForDisplay(unsigned int width, unsigned int height,
724  const vpHomogeneousMatrix &cMo,
725  const vpCameraParameters &camera,
726  bool displayFullModel)
727 {
728  std::vector<std::vector<double> > models;
729 
730  if ((isvisible && isTrackedLine) || displayFullModel) {
731  p1->changeFrame(cMo);
732  p2->changeFrame(cMo);
733 
734  vpImagePoint ip1, ip2;
735  vpCameraParameters c = camera;
736  if (poly.getClipping() > 3) // Contains at least one FOV constraint
737  c.computeFov(width, height);
738 
739  poly.computePolygonClipped(c);
740 
741  if (poly.polyClipped.size() == 2 &&
742  ((poly.polyClipped[1].second & poly.polyClipped[0].second & vpPolygon3D::NEAR_CLIPPING) == 0) &&
743  ((poly.polyClipped[1].second & poly.polyClipped[0].second & vpPolygon3D::FAR_CLIPPING) == 0) &&
744  ((poly.polyClipped[1].second & poly.polyClipped[0].second & vpPolygon3D::DOWN_CLIPPING) == 0) &&
745  ((poly.polyClipped[1].second & poly.polyClipped[0].second & vpPolygon3D::UP_CLIPPING) == 0) &&
746  ((poly.polyClipped[1].second & poly.polyClipped[0].second & vpPolygon3D::LEFT_CLIPPING) == 0) &&
747  ((poly.polyClipped[1].second & poly.polyClipped[0].second & vpPolygon3D::RIGHT_CLIPPING) == 0)) {
748 
749  std::vector<std::pair<vpPoint, vpPoint> > linesLst;
750  if (useScanLine && !displayFullModel) {
751  hiddenface->computeScanLineQuery(poly.polyClipped[0].first, poly.polyClipped[1].first, linesLst, true);
752  } else {
753  linesLst.push_back(std::make_pair(poly.polyClipped[0].first, poly.polyClipped[1].first));
754  }
755 
756  for (unsigned int i = 0; i < linesLst.size(); i++) {
757  linesLst[i].first.project();
758  linesLst[i].second.project();
759 
760  vpMeterPixelConversion::convertPoint(camera, linesLst[i].first.get_x(), linesLst[i].first.get_y(), ip1);
761  vpMeterPixelConversion::convertPoint(camera, linesLst[i].second.get_x(), linesLst[i].second.get_y(), ip2);
762 
763 #if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
764  std::vector<double> params = {0, // 0 for line parameters
765  ip1.get_i(), ip1.get_j(), ip2.get_i(), ip2.get_j()};
766 #else
767  std::vector<double> params;
768  params.push_back(0); // 0 for line parameters
769  params.push_back(ip1.get_i());
770  params.push_back(ip1.get_j());
771  params.push_back(ip2.get_i());
772  params.push_back(ip2.get_j());
773 #endif
774  models.push_back(params);
775  }
776  }
777  }
778 
779  return models;
780 }
781 
786 {
787  if (isvisible) {
788  L.resize(nbFeatureTotal, 6);
790  } else {
791  for (size_t i = 0; i < meline.size(); i++) {
792  nbFeature[i] = 0;
793  // To be consistent with nbFeature[i] = 0
794  std::list<vpMeSite> &me_site_list = meline[i]->getMeList();
795  me_site_list.clear();
796  }
797  nbFeatureTotal = 0;
798  }
799 }
800 
806 {
807  if (isvisible) {
808  try {
809  // feature projection
810  line->changeFrame(cMo);
811  line->projection();
812 
813  vpFeatureBuilder::create(featureline, *line);
814 
815  double rho = featureline.getRho();
816  double theta = featureline.getTheta();
817 
818  double co = cos(theta);
819  double si = sin(theta);
820 
821  double mx = 1.0 / cam.get_px();
822  double my = 1.0 / cam.get_py();
823  double xc = cam.get_u0();
824  double yc = cam.get_v0();
825 
826  double alpha_;
827  vpMatrix H = featureline.interaction();
828 
829  double x, y;
830  unsigned int j = 0;
831 
832  for (size_t i = 0; i < meline.size(); i++) {
833  for (std::list<vpMeSite>::const_iterator it = meline[i]->getMeList().begin();
834  it != meline[i]->getMeList().end(); ++it) {
835  x = (double)it->j;
836  y = (double)it->i;
837 
838  x = (x - xc) * mx;
839  y = (y - yc) * my;
840 
841  alpha_ = x * si - y * co;
842 
843  double *Lrho = H[0];
844  double *Ltheta = H[1];
845  // Calculate interaction matrix for a distance
846  for (unsigned int k = 0; k < 6; k++) {
847  L[j][k] = (Lrho[k] + alpha_ * Ltheta[k]);
848  }
849  error[j] = rho - (x * co + y * si);
850  j++;
851  }
852  }
853  } catch (...) {
854  // Handle potential exception: due to a degenerate case: the image of the straight line is a point!
855  // Set the corresponding interaction matrix part to zero
856  unsigned int j = 0;
857  for (size_t i = 0; i < meline.size(); i++) {
858  for (std::list<vpMeSite>::const_iterator it = meline[i]->getMeList().begin();
859  it != meline[i]->getMeList().end(); ++it) {
860  for (unsigned int k = 0; k < 6; k++) {
861  L[j][k] = 0.0;
862  }
863 
864  error[j] = 0.0;
865  j++;
866  }
867  }
868  }
869  }
870 }
871 
880 bool vpMbtDistanceLine::closeToImageBorder(const vpImage<unsigned char> &I, const unsigned int threshold)
881 {
882  if (threshold > I.getWidth() || threshold > I.getHeight()) {
883  return true;
884  }
885  if (isvisible) {
886 
887  for (size_t i = 0; i < meline.size(); i++) {
888  for (std::list<vpMeSite>::const_iterator it = meline[i]->getMeList().begin(); it != meline[i]->getMeList().end();
889  ++it) {
890  int i_ = it->i;
891  int j_ = it->j;
892 
893  if (i_ < 0 || j_ < 0) { // out of image.
894  return true;
895  }
896 
897  if (((unsigned int)i_ > (I.getHeight() - threshold)) || (unsigned int)i_ < threshold ||
898  ((unsigned int)j_ > (I.getWidth() - threshold)) || (unsigned int)j_ < threshold) {
899  return true;
900  }
901  }
902  }
903  }
904  return false;
905 }
void resize(unsigned int nrows, unsigned int ncols, bool flagNullify=true, bool recopy_=true)
Definition: vpArray2D.h:305
Generic class defining intrinsic camera parameters.
void computeFov(const unsigned int &w, const unsigned int &h)
Implementation of column vector and the associated operations.
Definition: vpColVector.h:167
static vpColVector cross(const vpColVector &a, const vpColVector &b)
Definition: vpColVector.h:391
void resize(unsigned int i, bool flagNullify=true)
Definition: vpColVector.h:351
Class to define RGB colors available for display functionalities.
Definition: vpColor.h:152
static void displayLine(const vpImage< unsigned char > &I, const vpImagePoint &ip1, const vpImagePoint &ip2, const vpColor &color, unsigned int thickness=1, bool segment=true)
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
double getTheta() const
vpMatrix interaction(unsigned int select=FEATURE_ALL)
double getRho() const
Implementation of an homogeneous matrix and operations on such kind of matrices.
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:82
double get_j() const
Definition: vpImagePoint.h:125
double get_i() const
Definition: vpImagePoint.h:114
unsigned int getWidth() const
Definition: vpImage.h:242
unsigned int getHeight() const
Definition: vpImage.h:184
Class that defines a 3D line in the object frame and allows forward projection of the line in the cam...
Definition: vpLine.h:100
void changeFrame(const vpHomogeneousMatrix &cMo, vpColVector &cP) const
Definition: vpLine.cpp:327
double getRho() const
Definition: vpLine.h:129
void projection()
Definition: vpLine.cpp:190
double getTheta() const
Definition: vpLine.h:141
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:152
void computeScanLineQuery(const vpPoint &a, const vpPoint &b, std::vector< std::pair< vpPoint, vpPoint > > &lines, const bool &displayResults=false)
void setMovingEdge(vpMe *Me)
std::vector< unsigned int > nbFeature
The number of moving edges.
void displayMovingEdges(const vpImage< unsigned char > &I)
std::vector< bool > Lindex_polygon_tracked
void updateMovingEdge(const vpImage< unsigned char > &I, const vpHomogeneousMatrix &cMo)
bool isvisible
Indicates if the line is visible or not.
void computeInteractionMatrixError(const vpHomogeneousMatrix &cMo)
vpPoint * p2
The second extremity.
vpLine * line
The 3D line.
void display(const vpImage< unsigned char > &I, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, const vpColor &col, unsigned int thickness=1, bool displayFullModel=false)
std::list< int > Lindex_polygon
Index of the faces which contain the line.
bool isVisible() const
bool initMovingEdge(const vpImage< unsigned char > &I, const vpHomogeneousMatrix &cMo, bool doNotTrack, const vpImage< bool > *mask=NULL)
void buildFrom(vpPoint &_p1, vpPoint &_p2, vpUniRand &rand_gen)
unsigned int nbFeatureTotal
The number of moving edges.
bool Reinit
Indicates if the line has to be reinitialized.
std::string getName() const
vpColVector error
The error vector.
vpMbHiddenFaces< vpMbtPolygon > * hiddenface
Pointer to the list of faces.
bool closeToImageBorder(const vpImage< unsigned char > &I, const unsigned int threshold)
std::vector< std::vector< double > > getModelForDisplay(unsigned int width, unsigned int height, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, bool displayFullModel=false)
void reinitMovingEdge(const vpImage< unsigned char > &I, const vpHomogeneousMatrix &cMo, const vpImage< bool > *mask=NULL)
std::vector< std::vector< double > > getFeaturesForDisplay()
bool useScanLine
Use scanline rendering.
vpPoint * p1
The first extremity.
std::vector< vpMbtMeLine * > meline
The moving edge container.
vpMatrix L
The interaction matrix.
void setTracked(const std::string &name, const bool &track)
void addPolygon(const int &index)
void trackMovingEdge(const vpImage< unsigned char > &I)
Performs search in a given direction(normal) for a given distance(pixels) for a given 'site'....
Definition: vpMeSite.h:65
vpMeSiteState getState() const
Definition: vpMeSite.h:261
double get_ifloat() const
Definition: vpMeSite.h:231
double get_jfloat() const
Definition: vpMeSite.h:238
Definition: vpMe.h:122
static void convertLine(const vpCameraParameters &cam, const double &rho_m, const double &theta_m, double &rho_p, double &theta_p)
static void convertPoint(const vpCameraParameters &cam, const double &x, const double &y, double &u, double &v)
This class defines the container for a plane geometrical structure.
Definition: vpPlane.h:54
void setA(double a)
Definition: vpPlane.h:80
void setD(double d)
Definition: vpPlane.h:86
double getD() const
Definition: vpPlane.h:106
void setC(double c)
Definition: vpPlane.h:84
double getA() const
Definition: vpPlane.h:100
double getC() const
Definition: vpPlane.h:104
double getB() const
Definition: vpPlane.h:102
void setB(double b)
Definition: vpPlane.h:82
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:77
double get_oX() const
Get the point oX coordinate in the object frame.
Definition: vpPoint.cpp:458
double get_oZ() const
Get the point oZ coordinate in the object frame.
Definition: vpPoint.cpp:462
double get_oY() const
Get the point oY coordinate in the object frame.
Definition: vpPoint.cpp:460
void changeFrame(const vpHomogeneousMatrix &cMo, vpColVector &cP) const
Definition: vpPoint.cpp:236
vpPoint * p
corners in the object frame
Definition: vpPolygon3D.h:76
void computePolygonClipped(const vpCameraParameters &cam=vpCameraParameters())
virtual void setNbPoint(unsigned int nb)
unsigned int getClipping() const
Definition: vpPolygon3D.h:113
std::vector< std::pair< vpPoint, unsigned int > > polyClipped
Region of interest clipped.
Definition: vpPolygon3D.h:78
void addPoint(unsigned int n, const vpPoint &P)
Class for generating random numbers with uniform probability density.
Definition: vpUniRand.h:122
uint32_t next()
Definition: vpUniRand.cpp:146