Visual Servoing Platform  version 3.4.0
servoSimuPoint2DCamVelocity3.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a 2D visual servoing on a point.
33  *
34  * Authors:
35  * Eric Marchand
36  * Fabien Spindler
37  *
38  *****************************************************************************/
39 
54 #include <stdio.h>
55 #include <stdlib.h>
56 
57 #include <visp3/core/vpHomogeneousMatrix.h>
58 #include <visp3/core/vpMath.h>
59 #include <visp3/io/vpParseArgv.h>
60 #include <visp3/robot/vpSimulatorCamera.h>
61 #include <visp3/visual_features/vpFeatureBuilder.h>
62 #include <visp3/visual_features/vpFeaturePoint.h>
63 #include <visp3/vs/vpServo.h>
64 
65 // List of allowed command line options
66 #define GETOPTARGS "h"
67 
68 void usage(const char *name, const char *badparam);
69 bool getOptions(int argc, const char **argv);
70 
79 void usage(const char *name, const char *badparam)
80 {
81  fprintf(stdout, "\n\
82 Simulation of a 2D visual servoing on a point:\n\
83 - eye-in-hand control law,\n\
84 - articular velocity are computed,\n\
85 - without display,\n\
86 - only the X coordinate of the point is selected.\n\
87  \n\
88 SYNOPSIS\n\
89  %s [-h]\n", name);
90 
91  fprintf(stdout, "\n\
92 OPTIONS: Default\n\
93  \n\
94  -h\n\
95  Print the help.\n");
96 
97  if (badparam)
98  fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
99 }
100 
111 bool getOptions(int argc, const char **argv)
112 {
113  const char *optarg_;
114  int c;
115  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
116 
117  switch (c) {
118  case 'h':
119  usage(argv[0], NULL);
120  return false;
121 
122  default:
123  usage(argv[0], optarg_);
124  return false;
125  }
126  }
127 
128  if ((c == 1) || (c == -1)) {
129  // standalone param or error
130  usage(argv[0], NULL);
131  std::cerr << "ERROR: " << std::endl;
132  std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
133  return false;
134  }
135 
136  return true;
137 }
138 
139 int main(int argc, const char **argv)
140 {
141 #if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
142  try {
143  // Read the command line options
144  if (getOptions(argc, argv) == false) {
145  exit(-1);
146  }
147 
148  vpServo task;
149  vpSimulatorCamera robot;
150 
151  std::cout << std::endl;
152  std::cout << "-------------------------------------------------------" << std::endl;
153  std::cout << " Test program for vpServo " << std::endl;
154  std::cout << " Eye-in-hand task control, articular velocity are computed" << std::endl;
155  std::cout << " Simulation " << std::endl;
156  std::cout << " task : servo a point " << std::endl;
157  std::cout << "-------------------------------------------------------" << std::endl;
158  std::cout << std::endl;
159 
160  // sets the initial camera location
162  cMo[0][3] = 0.1;
163  cMo[1][3] = 0.2;
164  cMo[2][3] = 2;
165  // Compute the position of the object in the world frame
166  vpHomogeneousMatrix wMc, wMo;
167  robot.getPosition(wMc);
168  wMo = wMc * cMo;
169 
170  // sets the point coordinates in the world frame
171  vpPoint point(0, 0, 0);
172 
173  // computes the point coordinates in the camera frame and its 2D
174  // coordinates
175  point.track(cMo);
176 
177  // sets the current position of the visual feature
178  vpFeaturePoint p;
179  vpFeatureBuilder::create(p, point); // retrieve x,y and Z of the vpPoint structure
180 
181  // sets the desired position of the visual feature
182  vpFeaturePoint pd;
183  pd.buildFrom(0, 0, 1); // buildFrom(x,y,Z) ;
184 
185  // define the task
186  // - we want an eye-in-hand control law
187  // - articular velocity are computed
189 
190  // Set the position of the end-effector frame in the camera frame as identity
192  vpVelocityTwistMatrix cVe(cMe);
193  task.set_cVe(cVe);
194 
195  // Set the Jacobian (expressed in the end-effector frame)
196  vpMatrix eJe;
197  robot.get_eJe(eJe);
198  task.set_eJe(eJe);
199 
200  // we want to see a point on a point
201  task.addFeature(p, pd, vpFeaturePoint::selectX());
202 
203  // set the gain
204  task.setLambda(1);
205 
206  // Display task information
207  task.print();
208 
209  unsigned int iter = 0;
210  // loop
211  while (iter++ < 100) {
212  std::cout << "---------------------------------------------" << iter << std::endl;
213  vpColVector v;
214 
215  // Set the Jacobian (expressed in the end-effector frame)
216  // since q is modified eJe is modified
217  robot.get_eJe(eJe);
218  task.set_eJe(eJe);
219 
220  // get the robot position
221  robot.getPosition(wMc);
222  // Compute the position of the object frame in the camera frame
223  cMo = wMc.inverse() * wMo;
224 
225  // new point position
226  point.track(cMo);
227  vpFeatureBuilder::create(p, point); // retrieve x,y and Z of the vpPoint structure
228 
229  // compute the control law
230  v = task.computeControlLaw();
231 
232  // send the camera velocity to the controller
234 
235  std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
236  }
237 
238  // Display task information
239  task.print();
240  return EXIT_SUCCESS;
241  } catch (const vpException &e) {
242  std::cout << "Catch a ViSP exception: " << e << std::endl;
243  return EXIT_FAILURE;
244  }
245 #else
246  (void)argc;
247  (void)argv;
248  std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
249  return EXIT_SUCCESS;
250 #endif
251 }
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:153
void buildFrom(double x, double y, double Z)
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
Implementation of an homogeneous matrix and operations on such kind of matrices.
Class that defines the simplest robot: a free flying camera.
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:490
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:506
error that can be emited by ViSP classes.
Definition: vpException.h:71
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:81
vpColVector getError() const
Definition: vpServo.h:278
vpColVector computeControlLaw()
Definition: vpServo.cpp:929
static unsigned int selectX()
void setLambda(double c)
Definition: vpServo.h:404
vpHomogeneousMatrix getPosition() const
Implementation of column vector and the associated operations.
Definition: vpColVector.h:130
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:448
vpHomogeneousMatrix inverse() const
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:306
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
void get_eJe(vpMatrix &eJe)
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:218