Visual Servoing Platform  version 3.4.0
manServo4PointsDisplay.cpp

Visual servoing experiment on 4 points with a display.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2019 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Simulation of a visual servoing with display.
*
* Authors:
* Eric Marchand
* Fabien Spindler
*
*****************************************************************************/
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h>
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV)
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpImageConvert.h>
#include <visp3/core/vpTime.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpMath.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/vision/vpPose.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
int main()
{
try {
// sets the initial camera location
vpHomogeneousMatrix cMo(0.3, 0.2, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(40));
vpHomogeneousMatrix wMo; // Set to identity
vpHomogeneousMatrix wMc; // Camera position in the world frame
// initialize the robot
robot.setSamplingTime(0.04); // 40ms
wMc = wMo * cMo.inverse();
robot.setPosition(wMc);
// initialize the camera parameters
vpCameraParameters cam(800, 800, 240, 180);
// Image definition
unsigned int height = 360;
unsigned int width = 480;
vpImage<unsigned char> I(height, width);
// Display initialization
#if defined(VISP_HAVE_X11)
vpDisplayX disp;
#elif defined(VISP_HAVE_GTK)
#elif defined(VISP_HAVE_GDI)
#elif defined(VISP_HAVE_OPENCV)
#endif
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV)
disp.init(I, 100, 100, "Simulation display");
#endif
// Desired visual features initialization
// sets the points coordinates in the object frame (in meter)
vpPoint point[4];
point[0].setWorldCoordinates(-0.1, -0.1, 0);
point[1].setWorldCoordinates(0.1, -0.1, 0);
point[2].setWorldCoordinates(0.1, 0.1, 0);
point[3].setWorldCoordinates(-0.1, 0.1, 0);
// sets the desired camera location
vpHomogeneousMatrix cMo_d(0, 0, 1, 0, 0, 0);
// computes the 3D point coordinates in the camera frame and its 2D
// coordinates
for (int i = 0; i < 4; i++)
point[i].project(cMo_d);
// creates the associated features
for (int i = 0; i < 4; i++)
vpFeatureBuilder::create(pd[i], point[i]);
// Current visual features initialization
// computes the 3D point coordinates in the camera frame and its 2D
// coordinates
for (int i = 0; i < 4; i++)
point[i].project(cMo);
// creates the associated features
for (int i = 0; i < 4; i++)
vpFeatureBuilder::create(p[i], point[i]);
// Task defintion
vpServo task;
// we want an eye-in-hand control law ;
// Set the position of the end-effector frame in the camera frame as identity
task.set_cVe(cVe);
// Set the Jacobian (expressed in the end-effector frame)
vpMatrix eJe;
robot.get_eJe(eJe);
task.set_eJe(eJe);
// we want to see a point on a point
for (int i = 0; i < 4; i++)
task.addFeature(p[i], pd[i]);
// Set the gain
task.setLambda(1.0);
// Print the current information about the task
task.print();
// The control loop
int k = 0;
while (k++ < 200) {
double t = vpTime::measureTimeMs();
// Display the image background
// Update the current features
for (int i = 0; i < 4; i++) {
point[i].project(cMo);
vpFeatureBuilder::create(p[i], point[i]);
}
// Display the task features (current and desired)
vpServoDisplay::display(task, cam, I);
// Update the robot Jacobian
robot.get_eJe(eJe);
task.set_eJe(eJe);
// Compute the control law
// Send the computed velocity to the robot and compute the new robot
// position
wMc = robot.getPosition();
cMo = wMc.inverse() * wMo;
// Print the current information about the task
task.print();
// Wait 40 ms
vpTime::wait(t, 40);
}
return EXIT_SUCCESS;
} catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have X11, GTK, or OpenCV, or GDI (Graphical Device Interface) functionalities to display images..." << std::endl;
std::cout << "Tip if you are on a unix-like system:" << std::endl;
std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
std::cout << "Tip if you are on a windows-like system:" << std::endl;
std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
return EXIT_SUCCESS;
}
#endif