Visual Servoing Platform  version 3.3.0 under development (2020-02-17)
vpPixelMeterConversion.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Pixel to meter conversion.
33  *
34  * Authors:
35  * Eric Marchand
36  * Anthony Saunier
37  *
38  *****************************************************************************/
39 
44 #include <visp3/core/vpCameraParameters.h>
45 #include <visp3/core/vpDebug.h>
46 #include <visp3/core/vpException.h>
47 #include <visp3/core/vpMath.h>
48 #include <visp3/core/vpPixelMeterConversion.h>
49 
60  const double &rho_p, const double &theta_p,
61  double &rho_m, double &theta_m)
62 {
63  double co = cos(theta_p);
64  double si = sin(theta_p);
65  double d = vpMath::sqr(cam.px * co) + vpMath::sqr(cam.py * si);
66 
67  if (fabs(d) < 1e-6) {
68  vpERROR_TRACE("division by zero");
69  throw(vpException(vpException::divideByZeroError, "division by zero"));
70  }
71  theta_m = atan2(si * cam.py, co * cam.px);
72  rho_m = (rho_p - cam.u0 * co - cam.v0 * si) / sqrt(d);
73 }
74 
86  unsigned int order, const vpMatrix &moment_pixel,
87  vpMatrix &moment_meter)
88 {
89 
90  vpMatrix m(order, order);
91  double yc = -cam.v0;
92  double xc = -cam.u0;
93 
94  for (unsigned int k = 0; k < order; k++) // iteration correspondant e l'ordre du moment
95  {
96  for (unsigned int p = 0; p < order; p++) // iteration en X
97  for (unsigned int q = 0; q < order; q++) // iteration en Y
98  if (p + q == k) // on est bien dans la matrice triangulaire superieure
99  {
100  m[p][q] = 0; // initialisation e 0
101  for (unsigned int r = 0; r <= p; r++) // somme externe
102  for (unsigned int t = 0; t <= q; t++) // somme interne
103  {
104  m[p][q] += static_cast<double>(vpMath::comb(p, r)) * static_cast<double>(vpMath::comb(q, t)) *
105  pow(xc, (int)(p - r)) * pow(yc, (int)(q - t)) * moment_pixel[r][t];
106  }
107  }
108  }
109 
110  for (unsigned int k = 0; k < order; k++) // iteration correspondant e l'ordre du moment
111  for (unsigned int p = 0; p < order; p++)
112  for (unsigned int q = 0; q < order; q++)
113  if (p + q == k) {
114  m[p][q] *= pow(cam.inv_px, (int)(1 + p)) * pow(cam.inv_py, (int)(1 + q));
115  }
116 
117  for (unsigned int k = 0; k < order; k++) // iteration correspondant e l'ordre du moment
118  for (unsigned int p = 0; p < order; p++)
119  for (unsigned int q = 0; q < order; q++)
120  if (p + q == k) {
121  moment_meter[p][q] = m[p][q];
122  }
123 }
124 
125 #if VISP_HAVE_OPENCV_VERSION >= 0x020300
126 
136 void vpPixelMeterConversion::convertLine(const cv::Mat &cameraMatrix,
137  const double &rho_p, const double &theta_p,
138  double &rho_m, double &theta_m)
139 {
140  double co = cos(theta_p);
141  double si = sin(theta_p);
142  double px = cameraMatrix.at<double>(0,0);
143  double py = cameraMatrix.at<double>(1,1);
144  double u0 = cameraMatrix.at<double>(0,2);
145  double v0 = cameraMatrix.at<double>(1,2);
146 
147  double d = vpMath::sqr(px * co) + vpMath::sqr(py * si);
148 
149  if (fabs(d) < 1e-6) {
150  vpERROR_TRACE("division by zero");
151  throw(vpException(vpException::divideByZeroError, "division by zero"));
152  }
153  theta_m = atan2(si * py, co * px);
154  rho_m = (rho_p - u0 * co - v0 * si) / sqrt(d);
155 }
156 
167 void vpPixelMeterConversion::convertMoment(const cv::Mat &cameraMatrix,
168  unsigned int order, const vpMatrix &moment_pixel,
169  vpMatrix &moment_meter)
170 {
171  double inv_px = 1. / cameraMatrix.at<double>(0,0);
172  double inv_py = 1. / cameraMatrix.at<double>(1,1);
173  double u0 = cameraMatrix.at<double>(0,2);
174  double v0 = cameraMatrix.at<double>(1,2);
175 
176  vpMatrix m(order, order);
177  double yc = -v0;
178  double xc = -u0;
179 
180  for (unsigned int k = 0; k < order; k++) // iteration correspondant e l'ordre du moment
181  {
182  for (unsigned int p = 0; p < order; p++) // iteration en X
183  for (unsigned int q = 0; q < order; q++) // iteration en Y
184  if (p + q == k) // on est bien dans la matrice triangulaire superieure
185  {
186  m[p][q] = 0; // initialisation e 0
187  for (unsigned int r = 0; r <= p; r++) // somme externe
188  for (unsigned int t = 0; t <= q; t++) // somme interne
189  {
190  m[p][q] += static_cast<double>(vpMath::comb(p, r)) * static_cast<double>(vpMath::comb(q, t)) *
191  pow(xc, static_cast<int>(p - r)) * pow(yc, static_cast<int>(q - t)) * moment_pixel[r][t];
192  }
193  }
194  }
195 
196  for (unsigned int k = 0; k < order; k++) // iteration correspondant e l'ordre du moment
197  for (unsigned int p = 0; p < order; p++)
198  for (unsigned int q = 0; q < order; q++)
199  if (p + q == k) {
200  m[p][q] *= pow(inv_px, static_cast<int>(1 + p)) * pow(inv_py, static_cast<int>(1 + q));
201  }
202 
203  for (unsigned int k = 0; k < order; k++) // iteration correspondant e l'ordre du moment
204  for (unsigned int p = 0; p < order; p++)
205  for (unsigned int q = 0; q < order; q++)
206  if (p + q == k) {
207  moment_meter[p][q] = m[p][q];
208  }
209 }
210 
225 void vpPixelMeterConversion::convertPoint(const cv::Mat &cameraMatrix, const cv::Mat &distCoeffs,
226  const double &u, const double &v, double &x, double &y)
227 {
228  std::vector<cv::Point2d> imagePoints_vec;
229  imagePoints_vec.push_back(cv::Point2d(u, v));
230  std::vector<cv::Point2d> objectPoints_vec;
231  cv::undistortPoints(imagePoints_vec, objectPoints_vec, cameraMatrix, distCoeffs);
232  x = objectPoints_vec[0].x;
233  y = objectPoints_vec[0].y;
234 }
235 
249 void vpPixelMeterConversion::convertPoint(const cv::Mat &cameraMatrix, const cv::Mat &distCoeffs,
250  const vpImagePoint &iP, double &x, double &y)
251 {
252  std::vector<cv::Point2d> imagePoints_vec;
253  imagePoints_vec.push_back(cv::Point2d(iP.get_u(), iP.get_v()));
254  std::vector<cv::Point2d> objectPoints_vec;
255  cv::undistortPoints(imagePoints_vec, objectPoints_vec, cameraMatrix, distCoeffs);
256  x = objectPoints_vec[0].x;
257  y = objectPoints_vec[0].y;
258 }
259 
260 #endif
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:164
#define vpERROR_TRACE
Definition: vpDebug.h:393
error that can be emited by ViSP classes.
Definition: vpException.h:71
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
double get_u() const
Definition: vpImagePoint.h:263
static double sqr(double x)
Definition: vpMath.h:114
Generic class defining intrinsic camera parameters.
static void convertMoment(const vpCameraParameters &cam, unsigned int order, const vpMatrix &moment_pixel, vpMatrix &moment_meter)
static long double comb(unsigned int n, unsigned int p)
Definition: vpMath.h:226
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:88
static void convertLine(const vpCameraParameters &cam, const double &rho_p, const double &theta_p, double &rho_m, double &theta_m)
double get_v() const
Definition: vpImagePoint.h:274