Visual Servoing Platform  version 3.3.0 under development (2020-02-17)
servoFrankaIBVS.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * tests the control law
33  * eye-in-hand control
34  * velocity computed in the camera frame
35  *
36  * Authors:
37  * Fabien Spindler
38  *
39  *****************************************************************************/
65 #include <iostream>
66 
67 #include <visp3/core/vpCameraParameters.h>
68 #include <visp3/gui/vpDisplayGDI.h>
69 #include <visp3/gui/vpDisplayX.h>
70 #include <visp3/io/vpImageIo.h>
71 #include <visp3/sensor/vpRealSense2.h>
72 #include <visp3/robot/vpRobotFranka.h>
73 #include <visp3/detection/vpDetectorAprilTag.h>
74 #include <visp3/visual_features/vpFeatureBuilder.h>
75 #include <visp3/visual_features/vpFeaturePoint.h>
76 #include <visp3/vs/vpServo.h>
77 #include <visp3/vs/vpServoDisplay.h>
78 #include <visp3/gui/vpPlot.h>
79 
80 #if defined(VISP_HAVE_REALSENSE2) && (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11) && \
81 (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI)) && defined(VISP_HAVE_FRANKA)
82 
83 void display_point_trajectory(const vpImage<unsigned char> &I, const std::vector<vpImagePoint> &vip,
84  std::vector<vpImagePoint> *traj_vip)
85 {
86  for (size_t i = 0; i < vip.size(); i++) {
87  if (traj_vip[i].size()) {
88  // Add the point only if distance with the previous > 1 pixel
89  if (vpImagePoint::distance(vip[i], traj_vip[i].back()) > 1.) {
90  traj_vip[i].push_back(vip[i]);
91  }
92  }
93  else {
94  traj_vip[i].push_back(vip[i]);
95  }
96  }
97  for (size_t i = 0; i < vip.size(); i++) {
98  for (size_t j = 1; j < traj_vip[i].size(); j++) {
99  vpDisplay::displayLine(I, traj_vip[i][j - 1], traj_vip[i][j], vpColor::green, 2);
100  }
101  }
102 }
103 
104 int main(int argc, char **argv)
105 {
106  double opt_tagSize = 0.120;
107  std::string opt_robot_ip = "192.168.1.1";
108  std::string opt_eMc_filename = "";
109  bool display_tag = true;
110  int opt_quad_decimate = 2;
111  bool opt_verbose = false;
112  bool opt_plot = false;
113  bool opt_adaptive_gain = false;
114  bool opt_task_sequencing = false;
115  double convergence_threshold = 0.00005;
116 
117  for (int i = 1; i < argc; i++) {
118  if (std::string(argv[i]) == "--tag_size" && i + 1 < argc) {
119  opt_tagSize = std::stod(argv[i + 1]);
120  }
121  else if (std::string(argv[i]) == "--ip" && i + 1 < argc) {
122  opt_robot_ip = std::string(argv[i + 1]);
123  }
124  else if (std::string(argv[i]) == "--eMc" && i + 1 < argc) {
125  opt_eMc_filename = std::string(argv[i + 1]);
126  }
127  else if (std::string(argv[i]) == "--verbose") {
128  opt_verbose = true;
129  }
130  else if (std::string(argv[i]) == "--plot") {
131  opt_plot = true;
132  }
133  else if (std::string(argv[i]) == "--adaptive_gain") {
134  opt_adaptive_gain = true;
135  }
136  else if (std::string(argv[i]) == "--task_sequencing") {
137  opt_task_sequencing = true;
138  }
139  else if (std::string(argv[i]) == "--quad_decimate" && i + 1 < argc) {
140  opt_quad_decimate = std::stoi(argv[i + 1]);
141  }
142  else if (std::string(argv[i]) == "--no-convergence-threshold") {
143  convergence_threshold = 0.;
144  }
145  else if (std::string(argv[i]) == "--help" || std::string(argv[i]) == "-h") {
146  std::cout << argv[0] << " [--ip <default " << opt_robot_ip << ">] [--tag_size <marker size in meter; default " << opt_tagSize << ">] [--eMc <eMc extrinsic file>] "
147  << "[--quad_decimate <decimation; default " << opt_quad_decimate << ">] [--adaptive_gain] [--plot] [--task_sequencing] [--no-convergence-threshold] [--verbose] [--help] [-h]"
148  << "\n";
149  return EXIT_SUCCESS;
150  }
151  }
152 
153  vpRobotFranka robot;
154 
155  try {
156  robot.connect(opt_robot_ip);
157 
158  vpRealSense2 rs;
159  rs2::config config;
160  unsigned int width = 640, height = 480;
161  config.enable_stream(RS2_STREAM_COLOR, 640, 480, RS2_FORMAT_RGBA8, 30);
162  config.enable_stream(RS2_STREAM_DEPTH, 640, 480, RS2_FORMAT_Z16, 30);
163  config.enable_stream(RS2_STREAM_INFRARED, 640, 480, RS2_FORMAT_Y8, 30);
164  rs.open(config);
165 
166  // Get camera extrinsics
167  vpPoseVector ePc;
168  // Set camera extrinsics default values
169  ePc[0] = 0.0337731; ePc[1] = -0.00535012; ePc[2] = -0.0523339;
170  ePc[3] = -0.247294; ePc[4] = -0.306729; ePc[5] = 1.53055;
171 
172  // If provided, read camera extrinsics from --eMc <file>
173  if (!opt_eMc_filename.empty()) {
174  ePc.loadYAML(opt_eMc_filename, ePc);
175  }
176  else {
177  std::cout << "Warning, opt_eMc_filename is empty! Use hard coded values." << "\n";
178  }
179  vpHomogeneousMatrix eMc(ePc);
180  std::cout << "eMc:\n" << eMc << "\n";
181 
182  // Get camera intrinsics
184  std::cout << "cam:\n" << cam << "\n";
185 
186  vpImage<unsigned char> I(height, width);
187 
188 #if defined(VISP_HAVE_X11)
189  vpDisplayX dc(I, 10, 10, "Color image");
190 #elif defined(VISP_HAVE_GDI)
191  vpDisplayGDI dc(I, 10, 10, "Color image");
192 #endif
193 
196  //vpDetectorAprilTag::vpPoseEstimationMethod poseEstimationMethod = vpDetectorAprilTag::BEST_RESIDUAL_VIRTUAL_VS;
197  vpDetectorAprilTag detector(tagFamily);
198  detector.setAprilTagPoseEstimationMethod(poseEstimationMethod);
199  detector.setDisplayTag(display_tag);
200  detector.setAprilTagQuadDecimate(opt_quad_decimate);
201 
202  // Servo
203  vpHomogeneousMatrix cdMc, cMo, oMo;
204 
205  // Desired pose used to compute the desired features
206  vpHomogeneousMatrix cdMo( vpTranslationVector(0, 0, opt_tagSize * 3), // 3 times tag with along camera z axis
207  vpRotationMatrix( {1, 0, 0, 0, -1, 0, 0, 0, -1} ) );
208 
209  // Create visual features
210  std::vector<vpFeaturePoint> p(4), pd(4); // We use 4 points
211 
212  // Define 4 3D points corresponding to the CAD model of the Apriltag
213  std::vector<vpPoint> point(4);
214  point[0].setWorldCoordinates(-opt_tagSize/2., -opt_tagSize/2., 0);
215  point[1].setWorldCoordinates( opt_tagSize/2., -opt_tagSize/2., 0);
216  point[2].setWorldCoordinates( opt_tagSize/2., opt_tagSize/2., 0);
217  point[3].setWorldCoordinates(-opt_tagSize/2., opt_tagSize/2., 0);
218 
219  vpServo task;
220  // Add the 4 visual feature points
221  for (size_t i = 0; i < p.size(); i++) {
222  task.addFeature(p[i], pd[i]);
223  }
226 
227  if (opt_adaptive_gain) {
228  vpAdaptiveGain lambda(1.5, 0.4, 30); // lambda(0)=4, lambda(oo)=0.4 and lambda'(0)=30
229  task.setLambda(lambda);
230  }
231  else {
232  task.setLambda(0.5);
233  }
234 
235  vpPlot *plotter = nullptr;
236  int iter_plot = 0;
237 
238  if (opt_plot) {
239  plotter = new vpPlot(2, static_cast<int>(250 * 2), 500, static_cast<int>(I.getWidth()) + 80, 10, "Real time curves plotter");
240  plotter->setTitle(0, "Visual features error");
241  plotter->setTitle(1, "Camera velocities");
242  plotter->initGraph(0, 8);
243  plotter->initGraph(1, 6);
244  plotter->setLegend(0, 0, "error_feat_p1_x");
245  plotter->setLegend(0, 1, "error_feat_p1_y");
246  plotter->setLegend(0, 2, "error_feat_p2_x");
247  plotter->setLegend(0, 3, "error_feat_p2_y");
248  plotter->setLegend(0, 4, "error_feat_p3_x");
249  plotter->setLegend(0, 5, "error_feat_p3_y");
250  plotter->setLegend(0, 6, "error_feat_p4_x");
251  plotter->setLegend(0, 7, "error_feat_p4_y");
252  plotter->setLegend(1, 0, "vc_x");
253  plotter->setLegend(1, 1, "vc_y");
254  plotter->setLegend(1, 2, "vc_z");
255  plotter->setLegend(1, 3, "wc_x");
256  plotter->setLegend(1, 4, "wc_y");
257  plotter->setLegend(1, 5, "wc_z");
258  }
259 
260  bool final_quit = false;
261  bool has_converged = false;
262  bool send_velocities = false;
263  bool servo_started = false;
264  std::vector<vpImagePoint> *traj_corners = nullptr; // To memorize point trajectory
265 
266  static double t_init_servo = vpTime::measureTimeMs();
267 
268  robot.set_eMc(eMc); // Set location of the camera wrt end-effector frame
270 
271  while (!has_converged && !final_quit) {
272  double t_start = vpTime::measureTimeMs();
273 
274  rs.acquire(I);
275 
277 
278  std::vector<vpHomogeneousMatrix> cMo_vec;
279  detector.detect(I, opt_tagSize, cam, cMo_vec);
280 
281  {
282  std::stringstream ss;
283  ss << "Left click to " << (send_velocities ? "stop the robot" : "servo the robot") << ", right click to quit.";
284  vpDisplay::displayText(I, 20, 20, ss.str(), vpColor::red);
285  }
286 
287  vpColVector v_c(6);
288 
289  // Only one tag is detected
290  if (cMo_vec.size() == 1) {
291  cMo = cMo_vec[0];
292 
293  static bool first_time = true;
294  if (first_time) {
295  // Introduce security wrt tag positionning in order to avoid PI rotation
296  std::vector<vpHomogeneousMatrix> v_oMo(2), v_cdMc(2);
297  v_oMo[1].buildFrom(0, 0, 0, 0, 0, M_PI);
298  for (size_t i = 0; i < 2; i++) {
299  v_cdMc[i] = cdMo * v_oMo[i] * cMo.inverse();
300  }
301  if (std::fabs(v_cdMc[0].getThetaUVector().getTheta()) < std::fabs(v_cdMc[1].getThetaUVector().getTheta())) {
302  oMo = v_oMo[0];
303  }
304  else {
305  std::cout << "Desired frame modified to avoid PI rotation of the camera" << std::endl;
306  oMo = v_oMo[1]; // Introduce PI rotation
307  }
308 
309  // Compute the desired position of the features from the desired pose
310  for (size_t i = 0; i < point.size(); i++) {
311  vpColVector cP, p_;
312  point[i].changeFrame(cdMo * oMo, cP);
313  point[i].projection(cP, p_);
314 
315  pd[i].set_x(p_[0]);
316  pd[i].set_y(p_[1]);
317  pd[i].set_Z(cP[2]);
318  }
319  }
320 
321  // Get tag corners
322  std::vector<vpImagePoint> corners = detector.getPolygon(0);
323 
324  // Update visual features
325  for (size_t i = 0; i < corners.size(); i++) {
326  // Update the point feature from the tag corners location
327  vpFeatureBuilder::create(p[i], cam, corners[i]);
328  // Set the feature Z coordinate from the pose
329  vpColVector cP;
330  point[i].changeFrame(cMo, cP);
331 
332  p[i].set_Z(cP[2]);
333  }
334 
335  if (opt_task_sequencing) {
336  if (! servo_started) {
337  if (send_velocities) {
338  servo_started = true;
339  }
340  t_init_servo = vpTime::measureTimeMs();
341  }
342  v_c = task.computeControlLaw((vpTime::measureTimeMs() - t_init_servo)/1000.);
343  }
344  else {
345  v_c = task.computeControlLaw();
346  }
347 
348  // Display the current and desired feature points in the image display
349  vpServoDisplay::display(task, cam, I);
350  for (size_t i = 0; i < corners.size(); i++) {
351  std::stringstream ss;
352  ss << i;
353  // Display current point indexes
354  vpDisplay::displayText(I, corners[i]+vpImagePoint(15, 15), ss.str(), vpColor::red);
355  // Display desired point indexes
356  vpImagePoint ip;
357  vpMeterPixelConversion::convertPoint(cam, pd[i].get_x(), pd[i].get_y(), ip);
358  vpDisplay::displayText(I, ip+vpImagePoint(15, 15), ss.str(), vpColor::red);
359  }
360  if (first_time) {
361  traj_corners = new std::vector<vpImagePoint> [corners.size()];
362  }
363  // Display the trajectory of the points used as features
364  display_point_trajectory(I, corners, traj_corners);
365 
366  if (opt_plot) {
367  plotter->plot(0, iter_plot, task.getError());
368  plotter->plot(1, iter_plot, v_c);
369  iter_plot++;
370  }
371 
372  if (opt_verbose) {
373  std::cout << "v_c: " << v_c.t() << std::endl;
374  }
375 
376  double error = task.getError().sumSquare();
377  std::stringstream ss;
378  ss << "error: " << error;
379  vpDisplay::displayText(I, 20, static_cast<int>(I.getWidth()) - 150, ss.str(), vpColor::red);
380 
381  if (opt_verbose)
382  std::cout << "error: " << error << std::endl;
383 
384  if (error < convergence_threshold) {
385  has_converged = true;
386  std::cout << "Servo task has converged" << "\n";
387  vpDisplay::displayText(I, 100, 20, "Servo task has converged", vpColor::red);
388  }
389  if (first_time) {
390  first_time = false;
391  }
392  } // end if (cMo_vec.size() == 1)
393  else {
394  v_c = 0;
395  }
396 
397  if (!send_velocities) {
398  v_c = 0;
399  }
400 
401  // Send to the robot
403 
404  {
405  std::stringstream ss;
406  ss << "Loop time: " << vpTime::measureTimeMs() - t_start << " ms";
407  vpDisplay::displayText(I, 40, 20, ss.str(), vpColor::red);
408  }
409  vpDisplay::flush(I);
410 
412  if (vpDisplay::getClick(I, button, false)) {
413  switch (button) {
415  send_velocities = !send_velocities;
416  break;
417 
419  final_quit = true;
420  v_c = 0;
421  break;
422 
423  default:
424  break;
425  }
426  }
427  }
428  std::cout << "Stop the robot " << std::endl;
430 
431  if (opt_plot && plotter != nullptr) {
432  delete plotter;
433  plotter = nullptr;
434  }
435 
436  task.kill();
437 
438  if (!final_quit) {
439  while (!final_quit) {
440  rs.acquire(I);
442 
443  vpDisplay::displayText(I, 20, 20, "Click to quit the program.", vpColor::red);
444  vpDisplay::displayText(I, 40, 20, "Visual servo converged.", vpColor::red);
445 
446  if (vpDisplay::getClick(I, false)) {
447  final_quit = true;
448  }
449 
450  vpDisplay::flush(I);
451  }
452  }
453  if (traj_corners) {
454  delete [] traj_corners;
455  }
456  }
457  catch(const vpException &e) {
458  std::cout << "ViSP exception: " << e.what() << std::endl;
459  std::cout << "Stop the robot " << std::endl;
461  return EXIT_FAILURE;
462  }
463  catch(const franka::NetworkException &e) {
464  std::cout << "Franka network exception: " << e.what() << std::endl;
465  std::cout << "Check if you are connected to the Franka robot"
466  << " or if you specified the right IP using --ip command line option set by default to 192.168.1.1. " << std::endl;
467  return EXIT_FAILURE;
468  }
469  catch(const std::exception &e) {
470  std::cout << "Franka exception: " << e.what() << std::endl;
471  return EXIT_FAILURE;
472  }
473 
474  return 0;
475 }
476 #else
477 int main()
478 {
479 #if !defined(VISP_HAVE_REALSENSE2)
480  std::cout << "Install librealsense-2.x" << std::endl;
481 #endif
482 #if (VISP_CXX_STANDARD < VISP_CXX_STANDARD_11)
483  std::cout << "Build ViSP with c++11 or higher compiler flag (cmake -DUSE_CXX_STANDARD=11)." << std::endl;
484 #endif
485 #if !defined(VISP_HAVE_FRANKA)
486  std::cout << "Install libfranka." << std::endl;
487 #endif
488  return 0;
489 }
490 #endif
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
Adaptive gain computation.
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
void setAprilTagPoseEstimationMethod(const vpPoseEstimationMethod &poseEstimationMethod)
static bool loadYAML(const std::string &filename, vpArray2D< Type > &A, char *header=NULL)
Definition: vpArray2D.h:653
vpRobot::vpRobotStateType setRobotState(vpRobot::vpRobotStateType newState)
Implementation of an homogeneous matrix and operations on such kind of matrices.
AprilTag 36h11 pattern (recommended)
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:497
static void convertPoint(const vpCameraParameters &cam, const double &x, const double &y, double &u, double &v)
Display for windows using GDI (available on any windows 32 platform).
Definition: vpDisplayGDI.h:128
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:150
error that can be emited by ViSP classes.
Definition: vpException.h:71
vpHomogeneousMatrix inverse() const
void open(const rs2::config &cfg=rs2::config())
static const vpColor green
Definition: vpColor.h:182
void setLegend(unsigned int graphNum, unsigned int curveNum, const std::string &legend)
Definition: vpPlot.cpp:547
static void flush(const vpImage< unsigned char > &I)
VISP_EXPORT double measureTimeMs()
Definition: vpTime.cpp:126
static const vpColor red
Definition: vpColor.h:179
Implementation of a rotation matrix and operations on such kind of matrices.
void set_eMc(const vpHomogeneousMatrix &eMc)
void setAprilTagQuadDecimate(float quadDecimate)
void kill()
Definition: vpServo.cpp:192
Initialize the velocity controller.
Definition: vpRobot.h:66
vpColVector computeControlLaw()
Definition: vpServo.cpp:935
static void display(const vpImage< unsigned char > &I)
Generic class defining intrinsic camera parameters.
void setLambda(double c)
Definition: vpServo.h:406
void setTitle(unsigned int graphNum, const std::string &title)
Definition: vpPlot.cpp:498
void plot(unsigned int graphNum, unsigned int curveNum, double x, double y)
Definition: vpPlot.cpp:286
void acquire(vpImage< unsigned char > &grey)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:574
const char * what() const
Stops robot motion especially in velocity and acceleration control.
Definition: vpRobot.h:65
void initGraph(unsigned int graphNum, unsigned int curveNbr)
Definition: vpPlot.cpp:206
Implementation of column vector and the associated operations.
Definition: vpColVector.h:130
void setDisplayTag(bool display, const vpColor &color=vpColor::none, unsigned int thickness=2)
vpCameraParameters getCameraParameters(const rs2_stream &stream, vpCameraParameters::vpCameraParametersProjType type=vpCameraParameters::perspectiveProjWithDistortion) const
Implementation of a pose vector and operations on poses.
Definition: vpPoseVector.h:151
double sumSquare() const
void connect(const std::string &franka_address, franka::RealtimeConfig realtime_config=franka::RealtimeConfig::kEnforce)
This class enables real time drawing of 2D or 3D graphics. An instance of the class open a window whi...
Definition: vpPlot.h:115
vpColVector getError() const
Definition: vpServo.h:282
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:88
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
unsigned int getWidth() const
Definition: vpImage.h:244
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:223
static void displayLine(const vpImage< unsigned char > &I, const vpImagePoint &ip1, const vpImagePoint &ip2, const vpColor &color, unsigned int thickness=1, bool segment=true)
Class that consider the case of a translation vector.
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
static double distance(const vpImagePoint &iP1, const vpImagePoint &iP2)
Definition: vpImagePoint.h:285
std::vector< std::vector< vpImagePoint > > & getPolygon()
bool detect(const vpImage< unsigned char > &I)