Visual Servoing Platform  version 3.0.1
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
servoViper650FourPoints2DCamVelocityInteractionCurrent.cpp

Example of eye-in-hand control law. We control here a real robot, the Viper S650 robot (arm with 6 degrees of freedom). The velocity is computed in camera frame. The inverse jacobian that converts cartesian velocities in joint velocities is implemented in the robot low level controller. Visual features are the image coordinates of 4 points. The target is made of 4 dots arranged as a 10cm by 10cm square.

/****************************************************************************
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2017 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* tests the control law
* eye-in-hand control
* velocity computed in the camera frame
*
* Authors:
* Fabien Spindler
*
*****************************************************************************/
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h>
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <stdlib.h>
#if (defined (VISP_HAVE_VIPER650) && defined (VISP_HAVE_DC1394))
#include <visp3/sensor/vp1394TwoGrabber.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpDisplay.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/blob/vpDot2.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpPoint.h>
#include <visp3/vision/vpPose.h>
#include <visp3/robot/vpRobotViper650.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
#define L 0.05 // to deal with a 10cm by 10cm square
void compute_pose(vpPoint point[], vpDot2 dot[], int ndot,
vpRxyzVector &cro, bool init)
{
vpHomogeneousMatrix cMo_dementhon; // computed pose with dementhon
vpHomogeneousMatrix cMo_lagrange; // computed pose with dementhon
vpPose pose;
for (int i=0; i < ndot; i ++) {
double x=0, y=0;
cog = dot[i].getCog();
vpPixelMeterConversion::convertPoint(cam, cog, x, y) ; //pixel to meter conversion
point[i].set_x(x) ;//projection perspective p
point[i].set_y(y) ;
pose.addPoint(point[i]) ;
}
if (init == true) {
pose.computePose(vpPose::DEMENTHON, cMo_dementhon) ;
// Compute and return the residual expressed in meter for the pose matrix
// 'cMo'
double residual_dementhon = pose.computeResidual(cMo_dementhon);
pose.computePose(vpPose::LAGRANGE, cMo_lagrange) ;
double residual_lagrange = pose.computeResidual(cMo_lagrange);
// Select the best pose to initialize the lowe pose computation
if (residual_lagrange < residual_dementhon)
cMo = cMo_lagrange;
else
cMo = cMo_dementhon;
}
else { // init = false; use of the previous pose to initialise LOWE
cRo.buildFrom(cro);
cMo.buildFrom(cto, cRo);
}
cMo.extract(cto);
cMo.extract(cRo);
cro.buildFrom(cRo);
}
int
main()
{
// Log file creation in /tmp/$USERNAME/log.dat
// This file contains by line:
// - the 6 computed joint velocities (m/s, rad/s) to achieve the task
// - the 6 mesured joint velocities (m/s, rad/s)
// - the 6 mesured joint positions (m, rad)
// - the 8 values of s - s*
std::string username;
// Get the user login name
// Create a log filename to save velocities...
std::string logdirname;
logdirname ="/tmp/" + username;
// Test if the output path exist. If no try to create it
if (vpIoTools::checkDirectory(logdirname) == false) {
try {
// Create the dirname
}
catch (...) {
std::cerr << std::endl
<< "ERROR:" << std::endl;
std::cerr << " Cannot create " << logdirname << std::endl;
return(-1);
}
}
std::string logfilename;
logfilename = logdirname + "/log.dat";
// Open the log file name
std::ofstream flog(logfilename.c_str());
try {
// Load the end-effector to camera frame transformation obtained
// using a camera intrinsic model with distortion
vpServo task ;
int i ;
bool reset = false;
vp1394TwoGrabber g(reset);
g.open(I) ;
g.acquire(I) ;
#ifdef VISP_HAVE_X11
vpDisplayX display(I,100,100,"Current image") ;
#elif defined(VISP_HAVE_OPENCV)
vpDisplayOpenCV display(I,100,100,"Current image") ;
#elif defined(VISP_HAVE_GTK)
vpDisplayGTK display(I,100,100,"Current image") ;
#endif
std::cout << std::endl ;
std::cout << "-------------------------------------------------------" << std::endl ;
std::cout << " Test program for vpServo " <<std::endl ;
std::cout << " Eye-in-hand task control, velocity computed in the camera space" << std::endl ;
std::cout << " Use of the Viper650 robot " << std::endl ;
std::cout << " task : servo 4 points on a square with dimention " << L << " meters" << std::endl ;
std::cout << "-------------------------------------------------------" << std::endl ;
std::cout << std::endl ;
vpDot2 dot[4] ;
std::cout << "Click on the 4 dots clockwise starting from upper/left dot..."
<< std::endl;
for (i=0 ; i < 4 ; i++) {
dot[i].setGraphics(true) ;
dot[i].initTracking(I) ;
cog = dot[i].getCog();
}
// Update camera parameters
robot.getCameraParameters (cam, I);
std::cout << "Camera parameters: \n" << cam << std::endl;
// Sets the current position of the visual feature
for (i=0 ; i < 4 ; i++)
vpFeatureBuilder::create(p[i], cam, dot[i]); //retrieve x,y of the vpFeaturePoint structure
// Set the position of the square target in a frame which origin is
// centered in the middle of the square
vpPoint point[4] ;
point[0].setWorldCoordinates(-L, -L, 0) ;
point[1].setWorldCoordinates( L, -L, 0) ;
point[2].setWorldCoordinates( L, L, 0) ;
point[3].setWorldCoordinates(-L, L, 0) ;
// Initialise a desired pose to compute s*, the desired 2D point features
vpTranslationVector cto(0, 0, 0.5); // tz = 0.5 meter
vpRotationMatrix cRo(cro); // Build the rotation matrix
cMo.buildFrom(cto, cRo); // Build the homogeneous matrix
// Sets the desired position of the 2D visual feature
// Compute the desired position of the features from the desired pose
for (int i=0; i < 4; i ++) {
vpColVector cP, p ;
point[i].changeFrame(cMo, cP) ;
point[i].projection(cP, p) ;
pd[i].set_x(p[0]) ;
pd[i].set_y(p[1]) ;
pd[i].set_Z(cP[2]);
}
// We want to see a point on a point
for (i=0 ; i < 4 ; i++)
task.addFeature(p[i],pd[i]) ;
// Set the proportional gain
task.setLambda(0.3) ;
// Display task information
task.print() ;
// Define the task
// - we want an eye-in-hand control law
// - articular velocity are computed
task.print() ;
// Initialise the velocity control of the robot
std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
for ( ; ; ) {
// Acquire a new image from the camera
g.acquire(I) ;
// Display this image
try {
// For each point...
for (i=0 ; i < 4 ; i++) {
// Achieve the tracking of the dot in the image
dot[i].track(I) ;
// Display a green cross at the center of gravity position in the
// image
cog = dot[i].getCog();
}
}
catch(...) {
flog.close() ; // Close the log file
vpTRACE("Error detected while tracking visual features") ;
robot.stopMotion() ;
return(1) ;
}
// During the servo, we compute the pose using LOWE method. For the
// initial pose used in the non linear minimisation we use the pose
// computed at the previous iteration.
compute_pose(point, dot, 4, cam, cMo, cto, cro, false);
for (i=0 ; i < 4 ; i++) {
// Update the point feature from the dot location
vpFeatureBuilder::create(p[i], cam, dot[i]);
// Set the feature Z coordinate from the pose
point[i].changeFrame(cMo, cP) ;
p[i].set_Z(cP[2]);
}
// Compute the visual servoing skew vector
v = task.computeControlLaw() ;
// Display the current and desired feature points in the image display
// Apply the computed joint velocities to the robot
// Save velocities applied to the robot in the log file
// v[0], v[1], v[2] correspond to joint translation velocities in m/s
// v[3], v[4], v[5] correspond to joint rotation velocities in rad/s
flog << v[0] << " " << v[1] << " " << v[2] << " "
<< v[3] << " " << v[4] << " " << v[5] << " ";
// Get the measured joint velocities of the robot
// Save measured joint velocities of the robot in the log file:
// - qvel[0], qvel[1], qvel[2] correspond to measured joint translation
// velocities in m/s
// - qvel[3], qvel[4], qvel[5] correspond to measured joint rotation
// velocities in rad/s
flog << qvel[0] << " " << qvel[1] << " " << qvel[2] << " "
<< qvel[3] << " " << qvel[4] << " " << qvel[5] << " ";
// Get the measured joint positions of the robot
// Save measured joint positions of the robot in the log file
// - q[0], q[1], q[2] correspond to measured joint translation
// positions in m
// - q[3], q[4], q[5] correspond to measured joint rotation
// positions in rad
flog << q[0] << " " << q[1] << " " << q[2] << " "
<< q[3] << " " << q[4] << " " << q[5] << " ";
// Save feature error (s-s*) for the 4 feature points. For each feature
// point, we have 2 errors (along x and y axis). This error is expressed
// in meters in the camera frame
flog << task.getError() << std::endl;
// Flush the display
// vpTRACE("\t\t || s - s* || = %f ", ( task.getError() ).sumSquare()) ;
}
std::cout << "Display task information: " << std::endl;
task.print() ;
task.kill();
flog.close() ; // Close the log file
return 0;
}
catch (...)
{
flog.close() ; // Close the log file
vpERROR_TRACE(" Test failed") ;
return 0;
}
}
#else
int
main()
{
vpERROR_TRACE("You do not have an afma6 robot or a firewire framegrabber connected to your computer...");
}
#endif