Visual Servoing Platform  version 3.0.1
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
servoSimuCylinder2DCamVelocityDisplaySecondaryTask.cpp

Simulation of a 2D visual servoing:Simulation of a 2D visual servoing:

This example illustrates in one hand a classical visual servoing with a cylinder. And in the other hand it illustrates the behaviour of the robot when adding a secondary task.

/****************************************************************************
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2017 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Simulation of a 2D visual servoing on a cylinder.
*
* Authors:
* Nicolas Melchior
*
*****************************************************************************/
#include <visp3/core/vpConfig.h>
#if (defined (VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV))
#include <stdlib.h>
#include <stdio.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpCylinder.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureLine.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpMath.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/gui/vpProjectionDisplay.h>
#include <visp3/vs/vpServo.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/vs/vpServoDisplay.h>
// List of allowed command line options
#define GETOPTARGS "cdh"
void usage(const char *name, const char *badparam);
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Simulation of a 2D visual servoing on a cylinder:\n\
- eye-in-hand control law,\n\
- velocity computed in the camera frame,\n\
- display the camera view.\n\
\n\
SYNOPSIS\n\
%s [-c] [-d] [-h]\n", name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
\n\
-c\n\
Disable the mouse click. Useful to automaze the \n\
execution of this program without humain intervention.\n\
\n\
-d \n\
Turn off the display.\n\
\n\
-h\n\
Print the help.\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'c': click_allowed = false; break;
case 'd': display = false; break;
case 'h': usage(argv[0], NULL); return false; break;
default:
usage(argv[0], optarg_);
return false; break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int
main(int argc, const char ** argv)
{
try {
bool opt_display = true;
bool opt_click_allowed = true;
// Read the command line options
if (getOptions(argc, argv, opt_click_allowed, opt_display) == false) {
exit (-1);
}
vpImage<unsigned char> Iint(512,512,0) ;
vpImage<unsigned char> Iext(512,512,0) ;
// We open a window using either X11, GTK or GDI.
#if defined VISP_HAVE_X11
vpDisplayX displayInt;
vpDisplayX displayExt;
#elif defined VISP_HAVE_GTK
vpDisplayGTK displayInt;
vpDisplayGTK displayExt;
#elif defined VISP_HAVE_GDI
vpDisplayGDI displayInt;
vpDisplayGDI displayExt;
#elif defined VISP_HAVE_OPENCV
vpDisplayOpenCV displayInt;
vpDisplayOpenCV displayExt;
#endif
if (opt_display) {
try{
// Display size is automatically defined by the image (Iint) and (Iext) size
displayInt.init(Iint, 100, 100,"Internal view") ;
displayExt.init(Iext, (int)(130+Iint.getWidth()), 100, "External view") ;
// Display the image
// The image class has a member that specify a pointer toward
// the display that has been initialized in the display declaration
// therefore is is no longuer necessary to make a reference to the
// display variable.
}
catch(...)
{
vpERROR_TRACE("Error while displaying the image") ;
exit(-1);
}
}
vpProjectionDisplay externalview ;
//Set the camera parameters
double px, py ; px = py = 600 ;
double u0, v0 ; u0 = v0 = 256 ;
vpCameraParameters cam(px,py,u0,v0);
vpServo task ;
// sets the initial camera location
vpHomogeneousMatrix cMo(-0.2,0.1,2,
robot.getPosition(wMc) ;
wMo = wMc * cMo; // Compute the position of the object in the world frame
// sets the final camera location (for simulation purpose)
vpHomogeneousMatrix cMod(0,0,1,
// sets the cylinder coordinates in the world frame
vpCylinder cylinder(0,1,0, // direction
0,0,0, // point of the axis
0.1) ; // radius
externalview.insert(cylinder) ;
// sets the desired position of the visual feature
cylinder.track(cMod) ;
cylinder.print() ;
//Build the desired line features thanks to the cylinder and especially its paramaters in the image frame
vpFeatureLine ld[2] ;
int i ;
for(i=0 ; i < 2 ; i++)
vpFeatureBuilder::create(ld[i],cylinder,i) ;
// computes the cylinder coordinates in the camera frame and its 2D coordinates
// sets the current position of the visual feature
cylinder.track(cMo) ;
cylinder.print() ;
//Build the current line features thanks to the cylinder and especially its paramaters in the image frame
for(i=0 ; i < 2 ; i++)
{
vpFeatureBuilder::create(l[i],cylinder,i) ;
l[i].print() ;
}
// define the task
// - we want an eye-in-hand control law
// - robot is controlled in the camera frame
// it can also be interesting to test these possibilities
// task.setInteractionMatrixType(vpServo::CURRENT,vpServo::PSEUDO_INVERSE) ;
// task.setInteractionMatrixType(vpServo::MEAN, vpServo::PSEUDO_INVERSE) ;
// task.setInteractionMatrixType(vpServo::CURRENT, vpServo::PSEUDO_INVERSE) ;
// task.setInteractionMatrixType(vpServo::DESIRED, vpServo::TRANSPOSE) ;
// task.setInteractionMatrixType(vpServo::CURRENT, vpServo::TRANSPOSE) ;
// we want to see 2 lines on 2 lines
task.addFeature(l[0],ld[0]) ;
task.addFeature(l[1],ld[1]) ;
// Set the point of view of the external view
vpHomogeneousMatrix cextMo(0,0,6,
// Display the initial scene
vpServoDisplay::display(task,cam,Iint) ;
externalview.display(Iext,cextMo, cMo, cam, vpColor::red);
// Display task information
task.print() ;
if (opt_display && opt_click_allowed) {
std::cout << "\n\nClick in the internal camera view window to start..." << std::endl;
}
// set the gain
task.setLambda(1) ;
// Display task information
task.print() ;
unsigned int iter=0 ;
// The first loop is needed to reach the desired position
do
{
std::cout << "---------------------------------------------" << iter++ <<std::endl ;
// get the robot position
robot.getPosition(wMc) ;
// Compute the position of the camera wrt the object frame
cMo = wMc.inverse() * wMo;
// new line position
// retrieve x,y and Z of the vpLine structure
// Compute the parameters of the cylinder in the camera frame and in the image frame
cylinder.track(cMo) ;
//Build the current line features thanks to the cylinder and especially its paramaters in the image frame
for(i=0 ; i < 2 ; i++)
{
vpFeatureBuilder::create(l[i],cylinder,i) ;
}
// Display the current scene
if (opt_display) {
vpServoDisplay::display(task,cam,Iint) ;
externalview.display(Iext,cextMo, cMo, cam, vpColor::red);
}
// compute the control law
v = task.computeControlLaw() ;
// send the camera velocity to the controller
std::cout << "|| s - s* || = " << ( task.getError() ).sumSquare() <<std::endl ;
}
while(( task.getError() ).sumSquare() > 1e-9) ;
// Second loop is to compute the control law while taking into account the secondary task.
// In this example the secondary task is cut in four steps.
// The first one consists in impose a movement of the robot along the x axis of the object frame with a velocity of 0.5.
// The second one consists in impose a movement of the robot along the y axis of the object frame with a velocity of 0.5.
// The third one consists in impose a movement of the robot along the x axis of the object frame with a velocity of -0.5.
// The last one consists in impose a movement of the robot along the y axis of the object frame with a velocity of -0.5.
// Each steps is made during 200 iterations.
vpColVector e1(6) ; e1 = 0 ;
vpColVector e2(6) ; e2 = 0 ;
vpColVector proj_e1 ;
vpColVector proj_e2 ;
iter = 0;
double rapport = 0;
double vitesse = 0.5;
unsigned int tempo = 800;
while(iter < tempo)
{
robot.getPosition(wMc) ;
// Compute the position of the camera wrt the object frame
cMo = wMc.inverse() * wMo;
cylinder.track(cMo) ;
for(i=0 ; i < 2 ; i++)
{
vpFeatureBuilder::create(l[i],cylinder,i) ;
}
if (opt_display)
{
vpServoDisplay::display(task,cam,Iint) ;
externalview.display(Iext,cextMo, cMo, cam, vpColor::red);
}
v = task.computeControlLaw() ;
if ( iter%tempo < 200 /*&& iter%tempo >= 0*/)
{
e2 = 0;
e1[0] = fabs(vitesse) ;
proj_e1 = task.secondaryTask(e1);
rapport = vitesse/proj_e1[0];
proj_e1 *= rapport ;
v += proj_e1 ;
}
if ( iter%tempo < 400 && iter%tempo >= 200)
{
e1 = 0;
e2[1] = fabs(vitesse) ;
proj_e2 = task.secondaryTask(e2);
rapport = vitesse/proj_e2[1];
proj_e2 *= rapport ;
v += proj_e2 ;
}
if ( iter%tempo < 600 && iter%tempo >= 400)
{
e2 = 0;
e1[0] = -fabs(vitesse) ;
proj_e1 = task.secondaryTask(e1);
rapport = -vitesse/proj_e1[0];
proj_e1 *= rapport ;
v += proj_e1 ;
}
if ( iter%tempo < 800 && iter%tempo >= 600)
{
e1 = 0;
e2[1] = -fabs(vitesse) ;
proj_e2 = task.secondaryTask(e2);
rapport = -vitesse/proj_e2[1];
proj_e2 *= rapport ;
v += proj_e2 ;
}
std::cout << "|| s - s* || = " << ( task.getError() ).sumSquare() <<std::endl ;
iter++;
}
if (opt_display && opt_click_allowed) {
std::cout << "\nClick in the internal camera view window to end..." << std::endl;
}
// Display task information
task.print() ;
task.kill();
return 0;
}
catch(vpException &e) {
std::cout << "Catch a ViSP exception: " << e << std::endl;
return 1;
}
}
#else
#include <iostream>
int main()
{
std::cout << "You do not have X11, GTK, GDI or OpenCV display functionalities..." << std::endl;
}
#endif