Visual Servoing Platform  version 3.0.1
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
servoAfma6Points2DCamVelocityEyeToHand.cpp

Example of a eye-to-hand control law. We control here a real robot, the Afma6 robot (cartesian robot, with 6 degrees of freedom). The robot is controlled in the camera frame.

/****************************************************************************
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2017 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* tests the control law
* eye-to-hand control
* velocity computed in the camera frame
*
* Authors:
* Eric Marchand
*
*****************************************************************************/
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h> // Debug trace
#include <stdlib.h>
#include <cmath> // std::fabs
#include <limits> // numeric_limits
#include <list>
#if (defined (VISP_HAVE_AFMA6) && defined (VISP_HAVE_DC1394))
#define SAVE 0
#include <visp3/sensor/vp1394TwoGrabber.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpImagePoint.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/core/vpPoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/robot/vpRobotAfma6.h>
#include <visp3/core/vpException.h>
#include <visp3/vs/vpServoDisplay.h>
#include <visp3/blob/vpDot.h>
#include <visp3/vision/vpPose.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/core/vpDisplay.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayGTK.h>
#define L 0.006
#define D 0
int main()
{
try
{
vpServo task ;
int i ;
g.open(I) ;
g.acquire(I) ;
#ifdef VISP_HAVE_X11
vpDisplayX display(I,100,100,"Current image") ;
#elif defined(VISP_HAVE_OPENCV)
vpDisplayOpenCV display(I,100,100,"Current image") ;
#elif defined(VISP_HAVE_GTK)
vpDisplayGTK display(I,100,100,"Current image") ;
#endif
std::cout << std::endl ;
std::cout << "-------------------------------------------------------" << std::endl ;
std::cout << " Test program for vpServo " <<std::endl ;
std::cout << " Eye-to-hand task control" << std::endl ;
std::cout << " Simulation " << std::endl ;
std::cout << " task : servo a point " << std::endl ;
std::cout << "-------------------------------------------------------" << std::endl ;
std::cout << std::endl ;
int nbPoint =7 ;
vpDot dot[nbPoint] ;
for (i=0 ; i < nbPoint ; i++)
{
dot[i].initTracking(I) ;
dot[i].setGraphics(true) ;
dot[i].track(I) ;
dot[i].setGraphics(false) ;
}
// Compute the pose 3D model
vpPoint point[nbPoint] ;
point[0].setWorldCoordinates(-2*L,D, -3*L) ;
point[1].setWorldCoordinates(0,D, -3*L) ;
point[2].setWorldCoordinates(2*L,D, -3*L) ;
point[3].setWorldCoordinates(-L,D,-L) ;
point[4].setWorldCoordinates(L,D, -L) ;
point[5].setWorldCoordinates(L,D, L) ;
point[6].setWorldCoordinates(-L,D, L) ;
vpRobotAfma6 robot ;
// Update camera parameters
robot.getCameraParameters (cam, I);
vpHomogeneousMatrix cMo, cdMo ;
vpPose pose ;
pose.clearPoint() ;
for (i=0 ; i < nbPoint ; i++)
{
cog = dot[i].getCog();
double x=0, y=0;
point[i].set_x(x) ;
point[i].set_y(y) ;
pose.addPoint(point[i]) ;
}
// compute the initial pose using Dementhon method followed by a non linear
// minimisation method
std::cout << cMo << std::endl ;
cMo.print() ;
/*------------------------------------------------------------------
-- Learning the desired position
-- or reading the desired position
------------------------------------------------------------------
*/
std::cout << " Learning 0/1 " <<std::endl ;
char name[FILENAME_MAX] ;
sprintf(name,"cdMo.dat") ;
int learning ;
std::cin >> learning ;
if (learning ==1)
{
// save the object position
vpTRACE("Save the location of the object in a file cdMo.dat") ;
std::ofstream f(name) ;
cMo.save(f) ;
f.close() ;
exit(1) ;
}
{
vpTRACE("Loading desired location from cdMo.dat") ;
std::ifstream f("cdMo.dat") ;
cdMo.load(f) ;
f.close() ;
}
vpFeaturePoint p[nbPoint], pd[nbPoint] ;
// set the desired position of the point by forward projection using
// the pose cdMo
for (i=0 ; i < nbPoint ; i++)
{
vpColVector cP, p ;
point[i].changeFrame(cdMo, cP) ;
point[i].projection(cP, p) ;
pd[i].set_x(p[0]) ;
pd[i].set_y(p[1]) ;
}
//------------------------------------------------------------------
vpTRACE("define the task") ;
vpTRACE("\t we want an eye-in-hand control law") ;
vpTRACE("\t robot is controlled in the camera frame") ;
for (i=0 ; i < nbPoint ; i++)
{
task.addFeature(p[i],pd[i]) ;
}
vpTRACE("Display task information " ) ;
task.print() ;
//------------------------------------------------------------------
double convergence_threshold = 0.00; //025 ;
//-------------------------------------------------------------
double error =1 ;
unsigned int iter=0 ;
vpTRACE("\t loop") ;
vpColVector v ; // computed robot velocity
// position of the object in the effector frame
vpHomogeneousMatrix oMcamrobot ;
oMcamrobot[0][3] = -0.05 ;
int it = 0 ;
double lambda_av =0.1;
double alpha = 1 ; //1 ;
double beta =3 ; //3 ;
std::cout << "alpha 0.7" << std::endl;
std::cin >> alpha ;
std::cout << "beta 5" << std::endl;
std::cin >> beta ;
std::list<vpImagePoint> Lcog ;
while(error > convergence_threshold)
{
std::cout << "---------------------------------------------" << iter++ <<std::endl ;
g.acquire(I) ;
ip.set_i( 265 );
ip.set_j( 150 );
vpDisplay::displayText(I, ip, "Eye-To-Hand Visual Servoing", vpColor::green) ;
ip.set_i( 280 );
ip.set_j( 150 );
vpDisplay::displayText(I, ip, "IRISA-INRIA Rennes, Lagadic project", vpColor::green) ;
try
{
for (i=0 ; i < nbPoint ; i++)
{
dot[i].track(I) ;
Lcog.push_back( dot[i].getCog() );
}
}
catch(...)
{
vpTRACE("Error detected while tracking visual features") ;
robot.stopMotion() ;
exit(1) ;
}
// compute the initial pose using a non linear minimisation method
pose.clearPoint() ;
for (i=0 ; i < nbPoint ; i++)
{
double x=0, y=0;
cog = dot[i].getCog();
point[i].set_x(x) ;
point[i].set_y(y) ;
point[i].changeFrame(cdMo, cP) ;
p[i].set_x(x) ;
p[i].set_y(y) ;
p[i].set_Z(cP[2]) ;
pose.addPoint(point[i]) ;
point[i].display(I,cMo,cam, vpColor::green) ;
point[i].display(I,cdMo,cam, vpColor::blue) ;
}
vpHomogeneousMatrix cMe, camrobotMe ;
robot.get_cMe(camrobotMe) ;
cMe = cMo *oMcamrobot * camrobotMe ;
task.set_cVe(cMe) ;
vpMatrix eJe ;
robot.get_eJe(eJe) ;
task.set_eJe(eJe) ;
// Compute the adaptative gain (speed up the convergence)
double gain ;
if (iter>2)
{
if (std::fabs(alpha) <= std::numeric_limits<double>::epsilon())
gain = lambda_av ;
else
{
gain = alpha * exp (-beta * ( task.getError() ).sumSquare() ) + lambda_av;
}
}
else gain = lambda_av ;
if (SAVE==1)
gain = gain/5 ;
vpTRACE("%f %f %f %f %f",alpha, beta, lambda_av, ( task.getError() ).sumSquare(), gain) ;
task.setLambda(gain) ;
v = task.computeControlLaw() ;
// display points trajectory
for (std::list<vpImagePoint>::const_iterator it_cog = Lcog.begin(); it_cog != Lcog.end(); ++it_cog)
{
}
error = ( task.getError() ).sumSquare() ;
std::cout << "|| s - s* || = "<< error<<std::endl ;
if (error>7)
{
vpTRACE("Error detected while tracking visual features") ;
robot.stopMotion() ;
exit(1) ;
}
// display the pose
// pose.display(I,cMo,cam, 0.04, vpColor::red) ;
// display the pose
// pose.display(I,cdMo,cam, 0.04, vpColor::blue) ;
if ((SAVE==1) && (iter %3==0))
{
sprintf(name,"/tmp/marchand/image.%04d.ppm",it++) ;
vpImageIo::write(Ic,name) ;
}
}
v = 0 ;
task.kill();
}
catch (...)
{
vpERROR_TRACE(" Test failed") ;
return 0;
}
}
#else
int
main()
{
vpERROR_TRACE("You do not have an afma6 robot or a firewire framegrabber connected to your computer...");
}
#endif