Example of eye-in-hand control law. We control here a real robot, the Afma6 robot (cartesian robot, with 6 degrees of freedom). The velocity is computed in the camera frame. Visual features are the image coordinates of 4 vpDot2 points. The interaction matrix is computed using the current visual features.
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h>
#include <stdlib.h>
#if (defined (VISP_HAVE_AFMA6) && defined (VISP_HAVE_DC1394))
#include <visp3/sensor/vp1394TwoGrabber.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpImagePoint.h>
#include <visp3/core/vpDisplay.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpTranslationVector.h>
#include <visp3/core/vpRxyzVector.h>
#include <visp3/core/vpRotationMatrix.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/core/vpPoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/blob/vpDot.h>
#include <visp3/robot/vpRobotAfma6.h>
#include <visp3/vs/vpServoDisplay.h>
#include <visp3/vision/vpPose.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpException.h>
#define L 0.05 // to deal with a 10cm by 10cm square
{
for (int i=0; i < ndot; i ++) {
double x=0, y=0;
}
if (init == true) {
if (residual_lagrange < residual_dementhon)
cMo = cMo_lagrange;
else
cMo = cMo_dementhon;
}
else {
}
}
int
main()
{
std::string username;
std::string logdirname;
logdirname ="/tmp/" + username;
try {
}
catch (...) {
std::cerr << std::endl
<< "ERROR:" << std::endl;
std::cerr << " Cannot create " << logdirname << std::endl;
exit(-1);
}
}
std::string logfilename;
logfilename = logdirname + "/log.dat";
std::ofstream flog(logfilename.c_str());
try
{
int i ;
#ifdef VISP_HAVE_X11
#elif defined(VISP_HAVE_OPENCV)
#elif defined(VISP_HAVE_GTK)
#endif
std::cout << std::endl ;
std::cout << "-------------------------------------------------------" << std::endl ;
std::cout << " Test program for vpServo " <<std::endl ;
std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl ;
std::cout << " Use of the Afma6 robot " << std::endl ;
std::cout << " Interaction matrix computed with the current features " << std::endl ;
std::cout << " task : servo 4 points on a square with dimention " << L << " meters" << std::endl ;
std::cout << "-------------------------------------------------------" << std::endl ;
std::cout << std::endl ;
std::cout << "Click on the 4 dots clockwise starting from upper/left dot..."
<< std::endl;
for (i=0 ; i < 4 ; i++) {
}
for (i=0 ; i < 4 ; i++)
for (int i=0; i < 4; i ++) {
}
std::cout << std::endl ;
for (i=0 ; i < 4 ; i++)
std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
for ( ; ; ) {
for (i=0 ; i < 4 ; i++) {
}
compute_pose(point, dot, 4, cam, cMo, cto, cro, false);
for (i=0 ; i < 4 ; i++) {
p[i].set_Z(cP[2]);
}
flog << v[0] << " " << v[1] << " " << v[2] << " "
<< v[3] << " " << v[4] << " " << v[5] << " ";
flog << qvel[0] << " " << qvel[1] << " " << qvel[2] << " "
<< qvel[3] << " " << qvel[4] << " " << qvel[5] << " ";
flog << q[0] << " " << q[1] << " " << q[2] << " "
<< q[3] << " " << q[4] << " " << q[5] << " ";
flog << cto[0] << " " << cto[1] << " " << cto[2] << " "
<< cro[0] << " " << cro[1] << " " << cro[2] << std::endl;
}
flog.close() ;
return 0;
}
catch (...) {
flog.close() ;
return 0;
}
}
#else
int
main()
{
vpERROR_TRACE(
"You do not have an afma6 robot or a firewire framegrabber connected to your computer...");
}
#endif