ViSP  2.9.0
testPose.cpp

Compute the pose of a 3D object using the Dementhon, Lagrange and Non-Linear approach.

/****************************************************************************
*
* $Id: testPose.cpp 4658 2014-02-09 09:50:14Z fspindle $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2014 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* Compute the pose of a 3D object using the Dementhon, Lagrange and
* Non-Linear approach.
*
* Authors:
* Eric Marchand
* Fabien Spindler
*
*****************************************************************************/
#include <visp/vpPose.h>
#include <visp/vpPoint.h>
#include <visp/vpMath.h>
#include <visp/vpTranslationVector.h>
#include <visp/vpRxyzVector.h>
#include <visp/vpRotationMatrix.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpDebug.h>
#include <visp/vpParseArgv.h>
#include <stdlib.h>
#include <stdio.h>
// List of allowed command line options
#define GETOPTARGS "h"
#define L 0.035
void usage(const char *name, const char *badparam);
bool getOptions(int argc, const char **argv);
void print_pose(const vpHomogeneousMatrix &cMo, const std::string &legend);
int compare_pose(const vpPose &pose, const vpHomogeneousMatrix &cMo_ref, const vpHomogeneousMatrix &cMo_est,
const std::string &legend);
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Compute the pose of a 3D object using the Dementhon, Lagrange and\n\
Non-Linear approach.\n\
\n\
SYNOPSIS\n\
%s [-h]\n", name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-h\n\
Print the help.\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'h': usage(argv[0], NULL); return false; break;
default:
usage(argv[0], optarg_);
return false; break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
// print the resulting estimated pose
void print_pose(const vpHomogeneousMatrix &cMo, const std::string &legend)
{
std::cout << std::endl << legend << "\n "
<< "tx = " << cpo[0] << "\n "
<< "ty = " << cpo[1] << "\n "
<< "tz = " << cpo[2] << "\n "
<< "tux = vpMath::rad(" << vpMath::deg(cpo[3]) << ")\n "
<< "tuy = vpMath::rad(" << vpMath::deg(cpo[4]) << ")\n "
<< "tuz = vpMath::rad(" << vpMath::deg(cpo[5]) << ")\n"
<< std::endl;
}
// test if pose is well estimated
int compare_pose(const vpPose &pose, const vpHomogeneousMatrix &cMo_ref, const vpHomogeneousMatrix &cMo_est,
const std::string &legend)
{
vpPoseVector pose_ref = vpPoseVector(cMo_ref);
vpPoseVector pose_est = vpPoseVector(cMo_est);
int fail = 0;
// Test done on the 3D pose
for(unsigned int i=0; i<6; i++) {
if (std::fabs(pose_ref[i]-pose_est[i]) > 0.001)
fail = 1;
}
std::cout << "Based on 3D parameters " << legend << " is " << (fail ? "badly" : "well") << " estimated" << std::endl;
// Test done on the residual
double r = pose.computeResidual(cMo_est);
if (pose.listP.size() < 4) {
fail = 1;
std::cout << "Not enough point" << std::endl;
return fail;
}
r = sqrt(r)/pose.listP.size();
//std::cout << "Residual on each point (meter): " << r << std::endl;
fail = (r > 0.1) ? 1 : 0;
std::cout << "Based on 2D residual (" << r << ") " << legend << " is " << (fail ? "badly" : "well") << " estimated" << std::endl;
return fail;
}
int
main(int argc, const char ** argv)
{
try {
// Read the command line options
if (getOptions(argc, argv) == false) {
exit (-1);
}
vpPoint P[5] ; // Point to be tracked
vpPose pose ;
pose.clearPoint() ;
P[0].setWorldCoordinates(-L,-L, 0 ) ;
P[1].setWorldCoordinates(L,-L, 0 ) ;
P[2].setWorldCoordinates(L,L, 0 ) ;
P[3].setWorldCoordinates(-2*L, 3*L, 0 ) ;
P[4].setWorldCoordinates(-L,L, 0.01 ) ;
//P[3].setWorldCoordinates(-L,L, 0 ) ;
int test_fail = 0, fail = 0;
vpPoseVector cpo_ref = vpPoseVector(0.01, 0.02, 0.25, vpMath::rad(5), 0,vpMath::rad(10));
vpHomogeneousMatrix cMo_ref(cpo_ref) ;
vpHomogeneousMatrix cMo ; // will contain the estimated pose
for(int i=0 ; i < 5 ; i++) {
P[i].project(cMo_ref) ;
//P[i].print();
pose.addPoint(P[i]) ; // and added to the pose computation class
}
// Let's go ...
print_pose(cMo_ref, std::string("Reference pose")); // print the reference pose
std::cout <<"-------------------------------------------------"<<std::endl ;
print_pose(cMo, std::string("Pose estimated by Lagrange"));
fail = compare_pose(pose, cMo_ref, cMo, "pose by Lagrange");
test_fail |= fail;
std::cout <<"--------------------------------------------------"<<std::endl ;
print_pose(cMo, std::string("Pose estimated by Dementhon"));
fail = compare_pose(pose, cMo_ref, cMo, "pose by Dementhon");
test_fail |= fail;
std::cout <<"--------------------------------------------------"<<std::endl ;
pose.setRansacThreshold(0.01);
print_pose(cMo, std::string("Pose estimated by Ransac"));
fail = compare_pose(pose, cMo_ref, cMo, "pose by Ransac");
test_fail |= fail;
std::cout <<"--------------------------------------------------"<<std::endl ;
print_pose(cMo, std::string("Pose estimated by Lagrange than Lowe"));
fail = compare_pose(pose, cMo_ref, cMo, "pose by Lagrange than Lowe");
test_fail |= fail;
std::cout <<"--------------------------------------------------"<<std::endl ;
print_pose(cMo, std::string("Pose estimated by Dementhon than Lowe"));
fail = compare_pose(pose, cMo_ref, cMo, "pose by Dementhon than Lowe");
test_fail |= fail;
// Now Virtual Visual servoing
std::cout <<"--------------------------------------------------"<<std::endl ;
print_pose(cMo, std::string("Pose estimated by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, "pose by VVS");
test_fail |= fail;
std::cout <<"-------------------------------------------------"<<std::endl ;
print_pose(cMo, std::string("Pose estimated by Dementhon than by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, "pose by Dementhon than by VVS");
test_fail |= fail;
std::cout <<"-------------------------------------------------"<<std::endl ;
print_pose(cMo, std::string("Pose estimated by Lagrange than by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, "pose by Lagrange than by VVS");
test_fail |= fail;
std::cout << "\nGlobal pose estimation test " << (test_fail ? "fail" : "is ok") << std::endl;
return test_fail;
}
catch(vpException e) {
std::cout << "Catch an exception: " << e << std::endl;
return 1;
}
}