ViSP  2.8.0
tutorial-ibvs-4pts-ogre-tracking.cpp
#include <visp/vpDisplayX.h>
#include <visp/vpDisplayGDI.h>
#include <visp/vpAROgre.h>
#include <visp/vpFeatureBuilder.h>
#include <visp/vpPose.h>
#include <visp/vpServo.h>
#include <visp/vpServoDisplay.h>
#include <visp/vpSimulatorCamera.h>
void display_trajectory(const vpImage<unsigned char> &I, const std::vector<vpDot2> &dot, unsigned int thickness)
{
static std::vector<vpImagePoint> traj[4];
for (unsigned int i=0; i<4; i++) {
traj[i].push_back(dot[i].getCog());
}
for (unsigned int i=0; i<4; i++) {
for (unsigned int j=1; j<traj[i].size(); j++) {
vpDisplay::displayLine(I, traj[i][j-1], traj[i][j], vpColor::green, thickness);
}
}
}
#if defined(VISP_HAVE_OGRE)
void ogre_get_render_image(vpAROgre &ogre, const vpImage<unsigned char> &background,
#if VISP_VERSION_INT > VP_VERSION_INT(2,7,0)
const
#endif
{
static vpImage<vpRGBa> Irender; // Image from ogre scene rendering
ogre.display(background, cMo);
ogre.getRenderingOutput(Irender, cMo);
// Due to the light that was added to the scene, we need to threshold the image
vpImageTools::binarise(I, (unsigned char)254, (unsigned char)255, (unsigned char)0, (unsigned char)255, (unsigned char)255);
}
#endif
int main()
{
#if defined(VISP_HAVE_OGRE) && (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
unsigned int thickness = 3;
vpHomogeneousMatrix cdMo(0, 0, 0.75, 0, 0, 0);
vpHomogeneousMatrix cMo(0.15, -0.1, 1., vpMath::rad(10), vpMath::rad(-10), vpMath::rad(50));
// Color image used as background texture.
vpImage<unsigned char> background(480, 640, 255);
// Parameters of our camera
vpCameraParameters cam(840, 840, background.getWidth()/2, background.getHeight()/2);
// Define the target as 4 points
std::vector<vpPoint> point(4) ;
point[0].setWorldCoordinates(-0.1,-0.1, 0);
point[1].setWorldCoordinates( 0.1,-0.1, 0);
point[2].setWorldCoordinates( 0.1, 0.1, 0);
point[3].setWorldCoordinates(-0.1, 0.1, 0);
// Our object
// A simulator with the camera parameters defined above,
// and the background image size
vpAROgre ogre;
ogre.setShowConfigDialog(false);
ogre.addResource("./"); // Add the path to the Sphere.mesh resource
ogre.init(background, false, true);
//ogre.setWindowPosition(680, 400);
// Create the scene that contains 4 spheres
// Sphere.mesh contains a sphere with 1 meter radius
std::vector<std::string> name(4);
for (int i=0; i<4; i++) {
std::ostringstream s; s << "Sphere" << i; name[i] = s.str();
ogre.load(name[i], "Sphere.mesh");
ogre.setScale(name[i], 0.02f, 0.02f, 0.02f); // Rescale the sphere to 2 cm radius
// Set the position of each sphere in the object frame
ogre.setPosition(name[i], vpTranslationVector(point[i].get_oX(), point[i].get_oY(), point[i].get_oZ()));
ogre.setRotation(name[i], vpRotationMatrix(M_PI/2, 0, 0));
}
// Add an optional point light source
Ogre::Light * light = ogre.getSceneManager()->createLight();
light->setDiffuseColour(1, 1, 1); // scaled RGB values
light->setSpecularColour(1, 1, 1); // scaled RGB values
light->setPosition((Ogre::Real)cdMo[0][3], (Ogre::Real)cdMo[1][3], (Ogre::Real)(-cdMo[2][3]));
light->setType(Ogre::Light::LT_POINT);
vpServo task ;
task.setLambda(0.5);
// Image used for the image processing
// Render the scene at the desired position
ogre_get_render_image(ogre, background, cdMo, I);
// Display the image in which we will do the tracking
#if defined(VISP_HAVE_X11)
vpDisplayX d(I, 0, 0, "Camera view at desired position");
#elif defined(VISP_HAVE_GDI)
vpDisplayGDI d(I, 0, 0, "Camera view at desired position");
#else
std::cout << "No image viewer is available..." << std::endl;
#endif
vpDisplay::displayCharString(I, 10, 10, "Click in the 4 dots to learn their positions", vpColor::red);
std::vector<vpDot2> dot(4);
vpFeaturePoint p[4], pd[4];
for (int i = 0 ; i < 4 ; i++) {
// Compute the desired feature at the desired position
dot[i].setGraphics(true);
dot[i].setGraphicsThickness(thickness);
dot[i].initTracking(I);
vpFeatureBuilder::create(pd[i], cam, dot[i].getCog());
}
// Render the scene at the initial position
ogre_get_render_image(ogre, background, cMo, I);
vpDisplay::setTitle(I, "Current camera view");
vpDisplay::displayCharString(I, 10, 10, "Click in the 4 dots to initialise the tracking and start the servo", vpColor::red);
for (int i = 0 ; i < 4 ; i++) {
// We notice that if we project the scene at a given pose, the pose estimated from
// the rendered image differs a little. That's why we cannot simply compute the desired
// feature from the desired pose using the next two lines. We will rather compute the
// desired position of the features from a learning stage.
// point[i].project(cdMo);
// vpFeatureBuilder::create(pd[i], point[i]);
// Compute the current feature at the initial position
dot[i].setGraphics(true);
dot[i].initTracking(I);
vpFeatureBuilder::create(p[i], cam, dot[i].getCog());
}
for (int i = 0 ; i < 4 ; i++) {
// Set the feature Z coordinate from the pose
point[i].changeFrame(cMo, cP) ;
p[i].set_Z(cP[2]);
task.addFeature(p[i], pd[i]);
}
robot.setSamplingTime(0.040);
robot.getPosition(wMc);
wMo = wMc * cMo;
for (; ; ) {
// From the camera position in the world frame we retrieve the object position
robot.getPosition(wMc);
cMo = wMc.inverse() * wMo;
// Update the scene from the new camera position
ogre_get_render_image(ogre, background, cMo, I);
for (int i = 0 ; i < 4 ; i++) {
dot[i].track(I);
vpFeatureBuilder::create(p[i], cam, dot[i].getCog());
}
for (int i = 0 ; i < 4 ; i++) {
// Set the feature Z coordinate from the pose
point[i].changeFrame(cMo, cP) ;
p[i].set_Z(cP[2]);
}
display_trajectory(I, dot, thickness);
vpServoDisplay::display(task, cam, I, vpColor::green, vpColor::red, thickness+2) ;
if (vpDisplay::getClick(I, false))
break;
vpTime::wait( robot.getSamplingTime() * 1000);
}
task.kill();
#endif
}