ViSP  2.8.0
servoSimuViper850FourPoints2DCamVelocity.cpp

Simulation of a 2D visual servoing:Simulation of a 2D visual servoing:

Interaction matrix is computed as the mean of the current and desired interaction matrix.

/****************************************************************************
*
* $Id: servoSimuFourPoints2DPolarCamVelocityDisplay.cpp 2503 2010-02-16 18:55:01Z fspindle $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* Simulation of a 2D visual servoing using 4 points with polar
* coordinates as visual feature.
*
* Authors:
* Fabien Spindler
*
*****************************************************************************/
#include <visp/vpDebug.h>
#include <visp/vpConfig.h>
#if (defined(WIN32) || defined(VISP_HAVE_PTHREAD)) && (defined (VISP_HAVE_X11) || defined(VISP_HAVE_OPENCV) || defined(VISP_HAVE_GDI))
// We need to use threading capabilities. Thus on Unix-like
// platforms, the libpthread third-party library need to be
// installed. On Windows, we use the native threading capabilities.
#include <stdlib.h>
#include <stdio.h>
#include <visp/vpCameraParameters.h>
#include <visp/vpDisplayX.h>
#include <visp/vpDisplayGTK.h>
#include <visp/vpDisplayGDI.h>
#include <visp/vpFeatureBuilder.h>
#include <visp/vpFeaturePoint.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpImage.h>
#include <visp/vpImagePoint.h>
#include <visp/vpIoTools.h>
#include <visp/vpMath.h>
#include <visp/vpMeterPixelConversion.h>
#include <visp/vpParseArgv.h>
#include <visp/vpServo.h>
#include <visp/vpSimulatorViper850.h>
// List of allowed command line options
#define GETOPTARGS "cdh"
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Tests a control law with the following characteristics:\n\
- eye-in-hand control\n\
- articular velocity are computed\n\
- servo on 4 points,\n\
- internal and external camera view displays.\n\
\n\
SYNOPSIS\n\
%s [-c] [-d] [-h]\n", name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-c\n\
Disable the mouse click. Useful to automaze the \n\
execution of this program without humain intervention.\n\
\n\
-d \n\
Turn off the display.\n\
\n\
-h\n\
Print the help.\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display)
{
const char *optarg;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg)) > 1) {
switch (c) {
case 'c': click_allowed = false; break;
case 'd': display = false; break;
case 'h': usage(argv[0], NULL); return false; break;
default:
usage(argv[0], optarg);
return false; break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg << std::endl << std::endl;
return false;
}
return true;
}
int
main(int argc, const char ** argv)
{
bool opt_click_allowed = true;
bool opt_display = true;
// Read the command line options
if (getOptions(argc, argv, opt_click_allowed, opt_display) == false) {
exit (-1);
}
// We open two displays, one for the internal camera view, the other one for
// the external view, using either X11, GTK or GDI.
#if defined VISP_HAVE_X11
vpDisplayX displayInt;
#elif defined VISP_HAVE_GDI
vpDisplayGDI displayInt;
#elif defined VISP_HAVE_OPENCV
vpDisplayOpenCV displayInt;
#endif
// open a display for the visualization
vpImage<unsigned char> Iint(480, 640, 255);
if (opt_display) {
displayInt.init(Iint,700,0, "Internal view") ;
}
int i;
vpServo task;
std::cout << std::endl ;
std::cout << "----------------------------------------------" << std::endl ;
std::cout << " Test program for vpServo " <<std::endl ;
std::cout << " Eye-in-hand task control, articular velocity are computed"
<< std::endl ;
std::cout << " Simulation " << std::endl ;
std::cout << " task : servo 4 points " << std::endl ;
std::cout << "----------------------------------------------" << std::endl ;
std::cout << std::endl ;
// sets the initial camera location
vpHomogeneousMatrix cMo(-0.05,-0.05,0.7,
// sets the point coordinates in the object frame
vpPoint point[4] ;
point[0].setWorldCoordinates(-0.045,-0.045,0) ;
point[3].setWorldCoordinates(-0.045,0.045,0) ;
point[2].setWorldCoordinates(0.045,0.045,0) ;
point[1].setWorldCoordinates(0.045,-0.045,0) ;
// computes the point coordinates in the camera frame and its 2D coordinates
for (i = 0 ; i < 4 ; i++)
point[i].track(cMo) ;
// sets the desired position of the point
for (i = 0 ; i < 4 ; i++)
vpFeatureBuilder::create(p[i],point[i]) ; //retrieve x,y and Z of the vpPoint structure
// sets the desired position of the feature point s*
//Desired pose
// Projection of the points
for (int i = 0 ; i < 4 ; i++)
point[i].track(cdMo);
for (int i = 0 ; i < 4 ; i++)
vpFeatureBuilder::create(pd[i], point[i]);
// define the task
// - we want an eye-in-hand control law
// - articular velocity are computed
// - we want to see a point on a point
for (i = 0 ; i < 4 ; i++)
task.addFeature(p[i],pd[i]) ;
// set the gain
task.setLambda(0.8) ;
// Declaration of the robot
vpSimulatorViper850 robot(opt_display);
// Initialise the robot and especially the camera
// Initialise the object for the display part
// Initialise the position of the object relative to the pose of the robot's camera
robot.initialiseObjectRelativeToCamera(cMo);
// Set the desired position (for the display part)
robot.setDesiredCameraPosition(cdMo);
// Get the internal robot's camera parameters
robot.getCameraParameters(cam,Iint);
if (opt_display)
{
//Get the internal view
robot.getInternalView(Iint);
}
// Display task information
task.print() ;
unsigned int iter=0 ;
// loop
while(iter++<500)
{
std::cout << "---------------------------------------------" << iter <<std::endl ;
//Get the Time at the beginning of the loop
double t = vpTime::measureTimeMs();
//Get the current pose of the camera
cMo = robot.get_cMo();
if (iter==1) {
std::cout <<"Initial robot position with respect to the object frame:\n";
cMo.print();
}
// new point position
for (i = 0 ; i < 4 ; i++)
{
point[i].track(cMo) ;
//retrieve x,y and Z of the vpPoint structure
try {
vpFeatureBuilder::create(p[i],point[i]) ;
}
catch(...)
{
break;
}
}
if (opt_display)
{
// Get the internal view and display it
robot.getInternalView(Iint);
}
if (opt_display && opt_click_allowed && iter == 1)
{
// suppressed for automate test
std::cout << "Click in the internal view window to continue..." << std::endl;
}
// compute the control law
v = task.computeControlLaw() ;
// send the camera velocity to the controller
std::cout << "|| s - s* || " << ( task.getError() ).sumSquare() <<std::endl ;
// The main loop has a duration of 10 ms at minimum
vpTime::wait(t,10);
}
// Display task information
task.print() ;
task.kill();
std::cout <<"Final robot position with respect to the object frame:\n";
cMo.print();
if (opt_display && opt_click_allowed)
{
// suppressed for automate test
std::cout << "Click in the internal view window to end..." << std::endl;
}
}
#else
int
main()
{
vpERROR_TRACE("You do not have X11, OpenCV or GDI display functionalities or threading capabilities...");
}
#endif