ViSP  2.8.0
servoSimuPoint3DCamVelocity.cpp
1 /****************************************************************************
2  *
3  * $Id: servoSimuPoint3DCamVelocity.cpp 2457 2010-01-07 10:41:18Z nmelchio $
4  *
5  * This file is part of the ViSP software.
6  * Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
7  *
8  * This software is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * ("GPL") version 2 as published by the Free Software Foundation.
11  * See the file LICENSE.txt at the root directory of this source
12  * distribution for additional information about the GNU GPL.
13  *
14  * For using ViSP with software that can not be combined with the GNU
15  * GPL, please contact INRIA about acquiring a ViSP Professional
16  * Edition License.
17  *
18  * See http://www.irisa.fr/lagadic/visp/visp.html for more information.
19  *
20  * This software was developed at:
21  * INRIA Rennes - Bretagne Atlantique
22  * Campus Universitaire de Beaulieu
23  * 35042 Rennes Cedex
24  * France
25  * http://www.irisa.fr/lagadic
26  *
27  * If you have questions regarding the use of this file, please contact
28  * INRIA at visp@inria.fr
29  *
30  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
31  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
32  *
33  *
34  * Description:
35  * Simulation of a 3D visual servoing on a 3D point.
36  *
37  * Authors:
38  * Eric Marchand
39  * Fabien Spindler
40  *
41  *****************************************************************************/
42 
43 
55 #include <stdlib.h>
56 #include <stdio.h>
57 
58 #include <visp/vpFeaturePoint3D.h>
59 #include <visp/vpHomogeneousMatrix.h>
60 #include <visp/vpMath.h>
61 #include <visp/vpParseArgv.h>
62 #include <visp/vpPoint.h>
63 #include <visp/vpServo.h>
64 #include <visp/vpSimulatorCamera.h>
65 
66 // List of allowed command line options
67 #define GETOPTARGS "h"
68 
77 void usage(const char *name, const char *badparam)
78 {
79  fprintf(stdout, "\n\
80 Simulation of a 3D visual servoing:\n\
81 - servo a 3D point,\n\
82 - eye-in-hand control law,\n\
83 - velocity computed in the camera frame,\n\
84 - without display.\n\
85  \n\
86 SYNOPSIS\n\
87  %s [-h]\n", name);
88 
89  fprintf(stdout, "\n\
90 OPTIONS: Default\n\
91  \n\
92  -h\n\
93  Print the help.\n");
94 
95  if (badparam)
96  fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
97 }
98 
108 bool getOptions(int argc, const char **argv)
109 {
110  const char *optarg;
111  int c;
112  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg)) > 1) {
113 
114  switch (c) {
115  case 'h': usage(argv[0], NULL); return false; break;
116 
117  default:
118  usage(argv[0], optarg);
119  return false; break;
120  }
121  }
122 
123  if ((c == 1) || (c == -1)) {
124  // standalone param or error
125  usage(argv[0], NULL);
126  std::cerr << "ERROR: " << std::endl;
127  std::cerr << " Bad argument " << optarg << std::endl << std::endl;
128  return false;
129  }
130 
131  return true;
132 }
133 
134 int
135 main(int argc, const char ** argv)
136 {
137  // Read the command line options
138  if (getOptions(argc, argv) == false) {
139  exit (-1);
140  }
141 
142  vpServo task ;
143  vpSimulatorCamera robot ;
144 
145  std::cout << std::endl ;
146  std::cout << "-------------------------------------------------------" << std::endl ;
147  std::cout << " Test program for vpServo " <<std::endl ;
148  std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl ;
149  std::cout << " Simulation " << std::endl ;
150  std::cout << " task : servo a 3D point " << std::endl ;
151  std::cout << "-------------------------------------------------------" << std::endl ;
152  std::cout << std::endl ;
153 
154  // sets the initial camera location
155  vpHomogeneousMatrix cMo ;
156  cMo[0][3] = 0.1 ;
157  cMo[1][3] = 0.2 ;
158  cMo[2][3] = 2 ;
159  // Compute the position of the object in the world frame
160  vpHomogeneousMatrix wMc, wMo;
161  robot.getPosition(wMc) ;
162  wMo = wMc * cMo;
163 
164  // sets the point coordinates in the world frame
165  vpPoint point ;
166  point.setWorldCoordinates(0,0,0) ;
167 
168  // computes the point coordinates in the camera frame
169  point.track(cMo) ;
170 
171  std::cout << "Point coordinates in the camera frame: " << point.cP.t() ;
172 
173  vpFeaturePoint3D p ;
174  p.buildFrom(point) ;
175 
176  // sets the desired position of the point
177  vpFeaturePoint3D pd ;
178  pd.set_XYZ(0,0,1) ;
179 
180  // define the task
181  // - we want an eye-in-hand control law
182  // - robot is controlled in the camera frame
184 
185  // we want to see a point on a point
186  std::cout << std::endl ;
187  task.addFeature(p,pd) ;
188 
189  // set the gain") ;
190  task.setLambda(1) ;
191 
192  // Display task information
193  task.print() ;
194 
195  unsigned int iter=0 ;
196  // loop
197  while(iter++<200)
198  {
199  std::cout << "---------------------------------------------" << iter <<std::endl ;
200  vpColVector v ;
201 
202  // get the robot position
203  robot.getPosition(wMc) ;
204  // Compute the position of the camera wrt the object frame
205  cMo = wMc.inverse() * wMo;
206 
207  // new point position
208  point.track(cMo) ;
209  p.buildFrom(point) ;
210  // std::cout << p.cP.t() ;
211  // std::cout << (p.get_s()).t() ;
212 
213  // compute the control law
214  v = task.computeControlLaw() ;
215  // send the camera velocity to the controller
217 
218  std::cout << "|| s - s* || = " << ( task.getError() ).sumSquare() <<std::endl ;
219  }
220 
221  // Display task information
222  task.print() ;
223  task.kill();
224 }
225 
void set_XYZ(const double X, const double Y, const double Z)
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
The class provides a data structure for the homogeneous matrices as well as a set of operations on th...
Class that defines the simplest robot: a free flying camera.
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, const unsigned int select=vpBasicFeature::FEATURE_ALL)
create a new ste of two visual features
Definition: vpServo.cpp:444
void setLambda(double _lambda)
set the gain lambda
Definition: vpServo.h:253
void track(const vpHomogeneousMatrix &cMo)
void buildFrom(const vpPoint &p)
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:79
Class that defines what is a point.
Definition: vpPoint.h:65
vpColVector cP
Definition: vpTracker.h:82
void kill()
destruction (memory deallocation if required)
Definition: vpServo.cpp:177
vpColVector getError() const
Definition: vpServo.h:301
vpColVector computeControlLaw()
compute the desired control law
Definition: vpServo.cpp:883
Class that defines the 3D point visual feature.
vpRowVector t() const
transpose of Vector
void getPosition(vpHomogeneousMatrix &wMc) const
Class that provides a data structure for the column vectors as well as a set of operations on these v...
Definition: vpColVector.h:72
vpHomogeneousMatrix inverse() const
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:258
Class required to compute the visual servoing control law descbribed in and .
Definition: vpServo.h:153
void setServo(vpServoType _servo_type)
Choice of the visual servoing control law.
Definition: vpServo.cpp:214
void setWorldCoordinates(const double ox, const double oy, const double oz)
Set the point world coordinates. We mean here the coordinates of the point in the object frame...
Definition: vpPoint.cpp:74