ViSP  2.8.0
servoSimuFourPoints2DCamVelocity.cpp
1 /****************************************************************************
2  *
3  * $Id: servoSimuFourPoints2DCamVelocity.cpp 2503 2010-02-16 18:55:01Z fspindle $
4  *
5  * This file is part of the ViSP software.
6  * Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
7  *
8  * This software is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * ("GPL") version 2 as published by the Free Software Foundation.
11  * See the file LICENSE.txt at the root directory of this source
12  * distribution for additional information about the GNU GPL.
13  *
14  * For using ViSP with software that can not be combined with the GNU
15  * GPL, please contact INRIA about acquiring a ViSP Professional
16  * Edition License.
17  *
18  * See http://www.irisa.fr/lagadic/visp/visp.html for more information.
19  *
20  * This software was developed at:
21  * INRIA Rennes - Bretagne Atlantique
22  * Campus Universitaire de Beaulieu
23  * 35042 Rennes Cedex
24  * France
25  * http://www.irisa.fr/lagadic
26  *
27  * If you have questions regarding the use of this file, please contact
28  * INRIA at visp@inria.fr
29  *
30  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
31  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
32  *
33  *
34  * Description:
35  * Simulation of a 2D visual servoing using 4 points as visual feature.
36  *
37  * Authors:
38  * Eric Marchand
39  * Fabien Spindler
40  *
41  *****************************************************************************/
42 
57 #include <stdlib.h>
58 #include <stdio.h>
59 
60 #include <visp/vpConfig.h>
61 #include <visp/vpFeatureBuilder.h>
62 #include <visp/vpFeaturePoint.h>
63 #include <visp/vpHomogeneousMatrix.h>
64 #include <visp/vpMath.h>
65 #include <visp/vpParseArgv.h>
66 #include <visp/vpServo.h>
67 #include <visp/vpSimulatorCamera.h>
68 
69 // List of allowed command line options
70 #define GETOPTARGS "h"
71 
80 void usage(const char *name, const char *badparam)
81 {
82  fprintf(stdout, "\n\
83 Simulation of a 2D visual servoing:\n\
84 - servo on 4 points,\n\
85 - eye-in-hand control law,\n\
86 - articular velocity are computed,\n\
87 - without display.\n\
88  \n\
89 SYNOPSIS\n\
90  %s [-h]\n", name);
91 
92  fprintf(stdout, "\n\
93 OPTIONS: Default\n\
94  \n\
95  -h\n\
96  Print the help.\n");
97 
98  if (badparam) {
99  fprintf(stderr, "ERROR: \n" );
100  fprintf(stderr, "\nBad parameter [%s]\n", badparam);
101  }
102 }
103 
114 bool getOptions(int argc, const char **argv)
115 {
116  const char *optarg;
117  int c;
118  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg)) > 1) {
119 
120  switch (c) {
121  case 'h': usage(argv[0], NULL); return false; break;
122 
123  default:
124  usage(argv[0], optarg);
125  return false; break;
126  }
127  }
128 
129  if ((c == 1) || (c == -1)) {
130  // standalone param or error
131  usage(argv[0], NULL);
132  std::cerr << "ERROR: " << std::endl;
133  std::cerr << " Bad argument " << optarg << std::endl << std::endl;
134  return false;
135  }
136 
137  return true;
138 }
139 
140 int
141 main(int argc, const char ** argv)
142 {
143  // Read the command line options
144  if (getOptions(argc, argv) == false) {
145  exit (-1);
146  }
147 
148  int i ;
149  vpServo task ;
150  vpSimulatorCamera robot ;
151 
152 
153  std::cout << std::endl ;
154  std::cout << "-------------------------------------------------------" << std::endl ;
155  std::cout << " Test program for vpServo " <<std::endl ;
156  std::cout << " Eye-in-hand task control, articular velocity are computed" << std::endl ;
157  std::cout << " Simulation " << std::endl ;
158  std::cout << " task : servo 4 points " << std::endl ;
159  std::cout << "-------------------------------------------------------" << std::endl ;
160  std::cout << std::endl ;
161 
162  // sets the initial camera location with respect to the object
163  vpHomogeneousMatrix cMo ;
164  cMo[0][3] = 0.1 ;
165  cMo[1][3] = 0.2 ;
166  cMo[2][3] = 2 ;
167 
168  // Compute the position of the object in the world frame
169  vpHomogeneousMatrix wMc, wMo;
170  robot.getPosition(wMc) ;
171  wMo = wMc * cMo;
172 
173  // sets the point coordinates in the object frame
174  vpPoint point[4] ;
175  point[0].setWorldCoordinates(-1,-1,0) ;
176  point[1].setWorldCoordinates(1,-1,0) ;
177  point[2].setWorldCoordinates(1,1,0) ;
178  point[3].setWorldCoordinates(-1,1,0) ;
179 
180  // computes the point coordinates in the camera frame and its 2D coordinates
181  for (i = 0 ; i < 4 ; i++)
182  point[i].track(cMo) ;
183 
184  // sets the desired position of the point
185  vpFeaturePoint p[4] ;
186  for (i = 0 ; i < 4 ; i++)
187  vpFeatureBuilder::create(p[i], point[i]) ; //retrieve x,y and Z of the vpPoint structure
188 
189  // sets the desired position of the point
190  vpFeaturePoint pd[4] ;
191 
192  pd[0].buildFrom(-0.1,-0.1, 1) ;
193  pd[1].buildFrom( 0.1,-0.1, 1) ;
194  pd[2].buildFrom( 0.1, 0.1, 1) ;
195  pd[3].buildFrom(-0.1, 0.1, 1) ;
196 
197  // define the task
198  // - we want an eye-in-hand control law
199  // - articular velocity are computed
202 
203  // Set the position of the camera in the end-effector frame
204  vpHomogeneousMatrix cMe ;
205  vpVelocityTwistMatrix cVe(cMe) ;
206  task.set_cVe(cVe) ;
207 
208  // Set the Jacobian (expressed in the end-effector frame)
209  vpMatrix eJe ;
210  robot.get_eJe(eJe) ;
211  task.set_eJe(eJe) ;
212 
213  // we want to see a point on a point
214  for (i = 0 ; i < 4 ; i++)
215  task.addFeature(p[i],pd[i]) ;
216 
217  // set the gain
218  task.setLambda(1) ;
219 
220  // Display task information
221  task.print() ;
222 
223  unsigned int iter=0 ;
224  // loop
225  while(iter++<1500)
226  {
227  std::cout << "---------------------------------------------" << iter <<std::endl ;
228  vpColVector v ;
229 
230  // Set the Jacobian (expressed in the end-effector frame)
231  // since q is modified eJe is modified
232  robot.get_eJe(eJe) ;
233  task.set_eJe(eJe) ;
234 
235  // get the robot position
236  robot.getPosition(wMc) ;
237  // Compute the position of the camera wrt the object frame
238  cMo = wMc.inverse() * wMo;
239 
240  // update new point position and corresponding features
241  for (i = 0 ; i < 4 ; i++)
242  {
243  point[i].track(cMo) ;
244  //retrieve x,y and Z of the vpPoint structure
245  vpFeatureBuilder::create(p[i],point[i]) ;
246  }
247  // since vpServo::MEAN interaction matrix is used, we need also to update the desired features at each iteration
248  pd[0].buildFrom(-0.1,-0.1, 1) ;
249  pd[1].buildFrom( 0.1,-0.1, 1) ;
250  pd[2].buildFrom( 0.1, 0.1, 1) ;
251  pd[3].buildFrom(-0.1, 0.1, 1) ;
252 
253  // compute the control law ") ;
254  v = task.computeControlLaw() ;
255 
256  // send the camera velocity to the controller ") ;
258 
259  std::cout << "|| s - s* || = " << ( task.getError() ).sumSquare() << std::endl;
260  }
261 
262  // Display task information
263  task.print() ;
264  task.kill();
265 }
266 
Definition of the vpMatrix class.
Definition: vpMatrix.h:96
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
The class provides a data structure for the homogeneous matrices as well as a set of operations on th...
Class that defines the simplest robot: a free flying camera.
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, const unsigned int select=vpBasicFeature::FEATURE_ALL)
create a new ste of two visual features
Definition: vpServo.cpp:444
void setLambda(double _lambda)
set the gain lambda
Definition: vpServo.h:253
void track(const vpHomogeneousMatrix &cMo)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void set_cVe(vpVelocityTwistMatrix &_cVe)
Definition: vpServo.h:230
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:79
Class that defines what is a point.
Definition: vpPoint.h:65
void kill()
destruction (memory deallocation if required)
Definition: vpServo.cpp:177
vpColVector getError() const
Definition: vpServo.h:301
vpColVector computeControlLaw()
compute the desired control law
Definition: vpServo.cpp:883
void set_eJe(vpMatrix &_eJe)
Definition: vpServo.h:238
void getPosition(vpHomogeneousMatrix &wMc) const
Class that consider the particular case of twist transformation matrix that allows to transform a vel...
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Set the type of the interaction matrix (current, mean, desired, user).
Definition: vpServo.cpp:509
void buildFrom(const double x, const double y, const double Z)
Class that provides a data structure for the column vectors as well as a set of operations on these v...
Definition: vpColVector.h:72
vpHomogeneousMatrix inverse() const
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:258
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class required to compute the visual servoing control law descbribed in and .
Definition: vpServo.h:153
void get_eJe(vpMatrix &eJe)
void setServo(vpServoType _servo_type)
Choice of the visual servoing control law.
Definition: vpServo.cpp:214
void setWorldCoordinates(const double ox, const double oy, const double oz)
Set the point world coordinates. We mean here the coordinates of the point in the object frame...
Definition: vpPoint.cpp:74