ViSP  2.10.0
testRobotViper850Pose.cpp

Example of robot pose usage.

Show how to compute rMo = rMc * cMo with cMo obtained by pose computation and rMc from the robot position.

/****************************************************************************
*
* $Id: testRobotViper850Pose.cpp 4574 2014-01-09 08:48:51Z fspindle $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2014 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* Test for Afma 6 dof robot.
*
* Authors:
* Fabien Spindler
*
*****************************************************************************/
#include <visp/vpConfig.h>
#include <visp/vpImage.h>
#include <visp/vpDisplayX.h>
#include <visp/vpDisplayOpenCV.h>
#include <visp/vpDisplayGTK.h>
#include <visp/vpRobotViper850.h>
#include <visp/vpCameraParameters.h>
#include <visp/vpPixelMeterConversion.h>
#include <visp/vp1394TwoGrabber.h>
#include <visp/vpPoint.h>
#include <visp/vpDot.h>
#include <visp/vpPose.h>
#include <visp/vpDebug.h>
#include <iostream>
#if defined(VISP_HAVE_VIPER850) && defined(VISP_HAVE_DC1394_2)
int main()
{
try {
// Create an image B&W container
// Create a firewire grabber based on libdc1394-2.x
bool reset = false;
vp1394TwoGrabber g(reset);
// Grab an image from the firewire camera
g.acquire(I);
// Create an image viewer for the image
#ifdef VISP_HAVE_X11
vpDisplayX display(I,100,100,"Current image") ;
#elif defined(VISP_HAVE_OPENCV)
vpDisplayOpenCV display(I,100,100,"Current image") ;
#elif defined(VISP_HAVE_GTK)
vpDisplayGTK display(I,100,100,"Current image") ;
#endif
// Display the image
// Define a squared target
// The target is made of 4 planar points (square dim = 0.077m)
double sdim = 0.077; // square width and height
vpPoint target[4] ;
// Set the point world coordinates (x,y,z) in the object frame
// o ----> x
// |
// |
// \/
// y
target[0].setWorldCoordinates(-sdim/2., -sdim/2., 0) ;
target[1].setWorldCoordinates( sdim/2., -sdim/2., 0) ;
target[2].setWorldCoordinates( sdim/2., sdim/2., 0) ;
target[3].setWorldCoordinates(-sdim/2., sdim/2., 0) ;
// Image processing to extract the 2D coordinates in sub-pixels of the 4
// points from the image acquired by the camera
// Creation of 4 trackers
vpDot dot[4];
for (int i=0; i < 4; i ++) {
dot[i].setGraphics(true); // to display the tracking results
std::cout << "Click on dot " << i << std::endl;
dot[i].initTracking( I );
// The tracker computes the sub-pixels coordinates in the image
// i ----> u
// |
// |
// \/
// v
std::cout << " Coordinates: " << dot[i].getCog() << std::endl;
// Flush the tracking results in the viewer
}
// Create an intrinsic camera parameters structure
// Create a robot access
// Load the end-effector to camera frame transformation obtained
// using a camera intrinsic model with distortion
// Get the intrinsic camera parameters associated to the image
robot.getCameraParameters(cam, I);
// Using the camera parameters, compute the perspective projection (transform
// the dot sub-pixel coordinates into coordinates in the camera frame in
// meter)
for (int i=0; i < 4; i ++) {
double x=0, y=0 ; // coordinates of the dots in the camera frame
// c ----> x
// |
// |
// \/
// y
//pixel to meter conversion
cog = dot[i].getCog();
target[i].set_x(x) ;
target[i].set_y(y) ;
}
// From now, in target[i], we have the 3D coordinates of a point in the
// object frame, and their correspondances in the camera frame. We can now
// compute the pose cMo between the camera and the object.
vpPose pose;
// Add the 4 points to compute the pose
for (int i=0; i < 4; i ++) {
pose.addPoint(target[i]) ;
}
// Create an homogeneous matrix for the camera to object transformation
// computed just bellow
// Compute the pose: initialisation is done by Lagrange method, and the final
// pose is computed by the more accurate Virtual Visual Servoing method.
std::cout << "Pose cMo: " << std::endl << cMo;
cMo.extract(R);
r.buildFrom(R);
std::cout << " rotation: "
<< vpMath::deg(r[0]) << " "
<< vpMath::deg(r[1]) << " "
<< vpMath::deg(r[2]) << " deg" << std::endl << std::endl;
// Get the robot position in the reference frame
vpColVector p; // position x,y,z,rx,ry,rz
std::cout << "Robot pose in reference frame: " << p << std::endl;
t[0] = p[0]; t[1] = p[1]; t[2] = p[2];
r[0] = p[3]; r[1] = p[4]; r[2] = p[5];
R.buildFrom(r);
rMc.buildFrom(t, R);
std::cout << "Pose rMc: " << std::endl << rMc;
rMc.extract(R);
r.buildFrom(R);
std::cout << " rotation: "
<< vpMath::deg(r[0]) << " "
<< vpMath::deg(r[1]) << " "
<< vpMath::deg(r[2]) << " deg" << std::endl << std::endl;
std::cout << "Robot pose in articular: " << p << std::endl;
robot.get_fMc(p, rMc);
std::cout << "Pose rMc from MGD: " << std::endl << rMc;
rMc.extract(R);
r.buildFrom(R);
std::cout << " rotation: "
<< vpMath::deg(r[0]) << " "
<< vpMath::deg(r[1]) << " "
<< vpMath::deg(r[2]) << " deg" << std::endl << std::endl;
rMo = rMc * cMo;
std::cout << "Pose rMo = rMc * cMo: " << std::endl << rMo;
rMo.extract(R);
r.buildFrom(R);
std::cout << " rotation: "
<< vpMath::deg(r[0]) << " "
<< vpMath::deg(r[1]) << " "
<< vpMath::deg(r[2]) << " deg" << std::endl << std::endl;
}
catch(vpException e) {
std::cout << "Catch an exception: " << e << std::endl;
}
return 0;
}
#else
int main()
{
std::cout << "Sorry, test not valid. You should have an Viper850 robot..."
<< std::endl;
return 0;
}
#endif