Visual Servoing Platform  version 3.6.1 under development (2024-03-18)
testRotation2.cpp

Test theta.u and quaternion multiplication.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Test theta.u and quaternion multiplication.
*
*****************************************************************************/
#include <visp3/core/vpConfig.h>
#ifdef VISP_HAVE_CATCH2
#include <visp3/core/vpThetaUVector.h>
#include <visp3/core/vpUniRand.h>
#define CATCH_CONFIG_RUNNER
#include <catch.hpp>
namespace
{
vpThetaUVector generateThetaU(vpUniRand &rng)
{
vpMath::rad(rng.uniform(-180.0, 180.0)) *
vpColVector({rng.uniform(-1.0, 1.0), rng.uniform(-1.0, 1.0), rng.uniform(-1.0, 1.0)}).normalize());
}
vpQuaternionVector generateQuat(vpUniRand &rng)
{
const double angle = vpMath::rad(rng.uniform(-180.0, 180.0));
const double ctheta = std::cos(angle);
const double stheta = std::sin(angle);
const double ax = rng.uniform(-1.0, 1.0);
const double ay = rng.uniform(-1.0, 1.0);
const double az = rng.uniform(-1.0, 1.0);
return vpQuaternionVector(stheta * ax, stheta * ay, stheta * az, ctheta);
}
} // namespace
TEST_CASE("Theta u multiplication", "[theta.u]")
{
const int nTrials = 100;
const uint64_t seed = 0x123456789;
vpUniRand rng(seed);
for (int iter = 0; iter < nTrials; iter++) {
const vpThetaUVector tu0 = generateThetaU(rng);
const vpThetaUVector tu1 = generateThetaU(rng);
const vpRotationMatrix c1Rc2(tu0);
const vpRotationMatrix c2Rc3(tu1);
const vpRotationMatrix c1Rc3_ref = c1Rc2 * c2Rc3;
const vpThetaUVector c1_tu_c3 = tu0 * tu1;
// two rotation vectors can represent the same rotation,
// that is why we compare the rotation matrices
const vpRotationMatrix c1Rc3(c1_tu_c3);
const double tolerance = 1e-9;
for (unsigned int i = 0; i < 3; i++) {
for (unsigned int j = 0; j < 3; j++) {
CHECK(c1Rc3_ref[i][j] == Approx(c1Rc3[i][j]).epsilon(0).margin(tolerance));
}
}
}
}
TEST_CASE("Quaternion multiplication", "[quaternion]")
{
const int nTrials = 100;
const uint64_t seed = 0x123456789;
vpUniRand rng(seed);
for (int iter = 0; iter < nTrials; iter++) {
const vpQuaternionVector q0 = generateQuat(rng);
const vpQuaternionVector q1 = generateQuat(rng);
const vpRotationMatrix c1Rc2(q0);
const vpRotationMatrix c2Rc3(q1);
const vpRotationMatrix c1Rc3_ref = c1Rc2 * c2Rc3;
const vpQuaternionVector c1_q_c3 = q0 * q1;
// two quaternions of opposite sign can represent the same rotation,
// that is why we compare the rotation matrices
const vpRotationMatrix c1Rc3(c1_q_c3);
const double tolerance = 1e-9;
for (unsigned int i = 0; i < 3; i++) {
for (unsigned int j = 0; j < 3; j++) {
CHECK(c1Rc3_ref[i][j] == Approx(c1Rc3[i][j]).epsilon(0).margin(tolerance));
}
}
}
}
int main(int argc, char *argv[])
{
Catch::Session session; // There must be exactly one instance
// Let Catch (using Clara) parse the command line
session.applyCommandLine(argc, argv);
int numFailed = session.run();
// numFailed is clamped to 255 as some unices only use the lower 8 bits.
// This clamping has already been applied, so just return it here
// You can also do any post run clean-up here
return numFailed;
}
#else
#include <iostream>
int main() { return EXIT_SUCCESS; }
#endif
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
static double rad(double deg)
Definition: vpMath.h:127
Implementation of a rotation vector as quaternion angle minimal representation.
Implementation of a rotation matrix and operations on such kind of matrices.
Implementation of a rotation vector as axis-angle minimal representation.
Class for generating random numbers with uniform probability density.
Definition: vpUniRand.h:123
int uniform(int a, int b)
Definition: vpUniRand.cpp:160