Visual Servoing Platform  version 3.6.1 under development (2024-11-15)
testPololuPosition.cpp
1 /*
2  * ViSP, open source Visual Servoing Platform software.
3  * Copyright (C) 2005 - 2024 by Inria. All rights reserved.
4  *
5  * This software is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  * See the file LICENSE.txt at the root directory of this source
10  * distribution for additional information about the GNU GPL.
11  *
12  * For using ViSP with software that can not be combined with the GNU
13  * GPL, please contact Inria about acquiring a ViSP Professional
14  * Edition License.
15  *
16  * See https://visp.inria.fr for more information.
17  *
18  * This software was developed at:
19  * Inria Rennes - Bretagne Atlantique
20  * Campus Universitaire de Beaulieu
21  * 35042 Rennes Cedex
22  * France
23  *
24  * If you have questions regarding the use of this file, please contact
25  * Inria at visp@inria.fr
26  *
27  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
28  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
29  *
30  * Description:
31  * Common test for Pololu position control of one servo connected to a given channel.
32  */
33 
38 #include <iostream>
39 
40 #include <visp3/core/vpConfig.h>
41 
42 #if defined(VISP_HAVE_POLOLU) && defined(VISP_HAVE_THREADS)
43 
44 #include <chrono>
45 #include <iostream>
46 #include <string>
47 #include <thread>
48 
49 #include <visp3/core/vpMath.h>
50 #include <visp3/robot/vpPololu.h>
51 
52 #ifdef ENABLE_VISP_NAMESPACE
53 using namespace VISP_NAMESPACE_NAME;
54 #endif
55 
56 void usage(const char **argv, int error, const std::string &device, int baudrate, int channel,
57  unsigned short pwm_min, unsigned short pwm_max, float angle_min, float angle_max)
58 {
59  std::cout << "Synopsis" << std::endl
60  << " " << argv[0] << " [--device <name>] [--baud <rate>] [--channel <number>] [--calibrate]"
61  << " [--range-pwm <min max> ] [--verbose, -v] [--help, -h]" << std::endl
62  << std::endl;
63  std::cout << "Description" << std::endl
64  << " --device <name> Device name." << std::endl
65  << " Default: " << device << std::endl
66  << std::endl
67  << " --baud <rate> Serial link baud rate." << std::endl
68  << " Default: " << baudrate << std::endl
69  << std::endl
70  << " --channel <number> Channel to dial with." << std::endl
71  << " Default: " << channel << std::endl
72  << std::endl
73  << " --range-pwm <min max> Set PWM min and max values." << std::endl
74  << " You can use \"--calibrate\" to retrieve min and max pwm values."
75  << " Default: " << pwm_min << " " << pwm_max << std::endl
76  << std::endl
77  << " --range-angles <min max> Set angle min and max values (deg)." << std::endl
78  << " Default: " << vpMath::deg(angle_min) << " " << vpMath::deg(angle_max) << std::endl
79  << std::endl
80  << " --verbose, -v Enable verbosity." << std::endl
81  << std::endl
82  << " --calibrate Start pwm calibration determining min and max admissible values." << std::endl
83  << " Once calibration done you can use \"--range-pwm <min max>\" option to set" << std::endl
84  << " the corresponding values" << std::endl
85  << std::endl
86  << " --help, -h Print this helper message." << std::endl
87  << std::endl;
88  if (error) {
89  std::cout << "Error" << std::endl
90  << " "
91  << "Unsupported parameter " << argv[error] << std::endl;
92  }
93 }
94 
95 int main(int argc, const char **argv)
96 {
97 #ifdef _WIN32
98  std::string opt_device = "COM4";
99 #else
100  std::string opt_device = "/dev/ttyACM0";
101  // Example for Mac OS, the Maestro creates two devices, use the one with the lowest number (the command port)
102  //std::string opt_device = "/dev/cu.usbmodem00031501";
103 #endif
104  int opt_channel = 0;
105  int opt_baudrate = 38400;
106  bool opt_verbose = false;
107  bool opt_calibrate = false;
108  unsigned short opt_pwm_min = 4000;
109  unsigned short opt_pwm_max = 8000;
110  float opt_angle_min = static_cast<float>(vpMath::rad(-45));
111  float opt_angle_max = static_cast<float>(vpMath::rad(45));
112  float opt_positioning_velocity = static_cast<float>(vpMath::rad(10));
113  float last_angle = 0;
114  int time_s = 0;
115 
116  for (int i = 1; i < argc; i++) {
117  if (std::string(argv[i]) == "--device" && i + 1 < argc) {
118  opt_device = std::string(argv[i + 1]);
119  i++;
120  }
121  else if (std::string(argv[i]) == "--baud" && i + 1 < argc) {
122  opt_baudrate = std::atoi(argv[i + 1]);
123  i++;
124  }
125  else if (std::string(argv[i]) == "--channel" && i + 1 < argc) {
126  opt_channel = std::atoi(argv[i + 1]);
127  i++;
128  }
129  else if (std::string(argv[i]) == "--range-pwm" && i + 2 < argc) {
130  opt_pwm_min = static_cast<unsigned short>(vpMath::rad(std::atoi(argv[i + 1])));
131  opt_pwm_max = static_cast<unsigned short>(vpMath::rad(std::atoi(argv[i + 2])));
132  i += 2;
133  }
134  else if (std::string(argv[i]) == "--range-angles" && i + 2 < argc) {
135  opt_angle_min = static_cast<float>(std::atof(argv[i + 1]));
136  opt_angle_max = static_cast<float>(std::atof(argv[i + 2]));
137  i += 2;
138  }
139  else if (std::string(argv[i]) == "--calibrate") {
140  opt_calibrate = true;
141  }
142  else if (std::string(argv[i]) == "--verbose" || std::string(argv[i]) == "-v") {
143  opt_verbose = true;
144  }
145  else if (std::string(argv[i]) == "--help" || std::string(argv[i]) == "-h") {
146  usage(argv, 0, opt_device, opt_baudrate, opt_channel, opt_pwm_min, opt_pwm_max, opt_angle_min, opt_angle_max);
147  return EXIT_SUCCESS;
148  }
149  else {
150  usage(argv, i, opt_device, opt_baudrate, opt_channel, opt_pwm_min, opt_pwm_max, opt_angle_min, opt_angle_max);
151  return EXIT_FAILURE;
152  }
153  }
154 
155  try {
156  // Creating the servo object on channel 0
157  vpPololu servo(opt_device, opt_baudrate, opt_channel, opt_verbose);
158 
159  std::cout << "Pololu board is " << (servo.connected() ? "connected" : "disconnected") << std::endl;
160 
161  if (opt_calibrate) {
162  std::cout << "Proceed to calibration to determine pwm min and max values..." << std::endl;
163  std::cout << "WARNING: Calibration will move the servo at channel " << opt_channel << "!" << std::endl;
164  std::cout << "Press Enter to move to min and max pwm positions..." << std::endl;
165  std::cin.ignore();
166 
167  unsigned short pwm_min, pwm_max;
168  servo.calibrate(pwm_min, pwm_max);
169  std::cout << "Servo on channel " << opt_channel << " has pwm range [" << pwm_min << ", " << pwm_max << "]" << std::endl;
170  return EXIT_SUCCESS;
171  }
172 
173  servo.setPwmRange(opt_pwm_min, opt_pwm_max);
174  servo.setAngularRange(opt_angle_min, opt_angle_max);
175 
176  // Getting the ranges of the servo
177  servo.getRangePwm(opt_pwm_min, opt_pwm_max);
178  std::cout << "Position range (pwm): " << opt_pwm_min << " " << opt_pwm_max << std::endl;
179  servo.getRangeAngles(opt_angle_min, opt_angle_max);
180  std::cout << "Position range (deg): " << vpMath::deg(opt_angle_min) << " " << vpMath::deg(opt_angle_max) << std::endl;
181 
182  // Servo will first move to min pwm range wait 3 seconds and move to max pwm range
183  std::cout << "Move to min position (pwm): " << opt_pwm_min << " at max velocity" << std::endl;
184  servo.setPwmPosition(opt_pwm_min, 0);
185  std::this_thread::sleep_for(std::chrono::seconds(3));
186  std::cout << "Servo reached position (pwm): " << servo.getPwmPosition() << std::endl;
187 
188  std::cout << "Move to max position (pwm): " << opt_pwm_max << " at max velocity" << std::endl;
189  servo.setPwmPosition(opt_pwm_max, 0);
190  std::this_thread::sleep_for(std::chrono::seconds(3));
191  std::cout << "Servo reached position (pwm): " << servo.getPwmPosition() << std::endl;
192 
193  // Servo will first move to min angle wait 3 seconds and move to max angle
194  std::cout << "Move to min position (deg): " << vpMath::deg(opt_angle_min) << " at max velocity" << std::endl;
195  servo.setAngularPosition(opt_angle_min, 0);
196  std::this_thread::sleep_for(std::chrono::seconds(3));
197  std::cout << "Servo reached position (deg): " << vpMath::deg(servo.getAngularPosition()) << std::endl;
198 
199  std::cout << "Move to max position (deg): " << vpMath::deg(opt_angle_max) << " at max velocity" << std::endl;
200  servo.setAngularPosition(opt_angle_max, 0);
201  std::this_thread::sleep_for(std::chrono::seconds(3));
202  std::cout << "Servo reached position (deg): " << vpMath::deg(servo.getAngularPosition()) << std::endl;
203 
204  // Servo will move to 0 angle at a max velocity in rad/s
205  std::cout << "Move to zero position (deg): " << vpMath::deg(0) << " at max velocity" << std::endl;
206  servo.setAngularPosition(0, 0);
207  std::this_thread::sleep_for(std::chrono::seconds(3));
208  last_angle = servo.getAngularPosition();
209  std::cout << "Servo reached position (deg): " << vpMath::deg(last_angle) << std::endl;
210 
211  // Servo will first move to min angle at a given velocity in rad/s
212  std::cout << "Move to min position (deg): " << vpMath::deg(opt_angle_min) << " at " << vpMath::deg(opt_positioning_velocity) << " deg/s" << std::endl;
213  servo.setAngularPosition(opt_angle_min, opt_positioning_velocity);
214  // Estimate time to reach position
215  time_s = static_cast<int>(std::abs((opt_angle_min - last_angle) / opt_positioning_velocity) + 2);
216 
217  std::this_thread::sleep_for(std::chrono::seconds(time_s));
218  last_angle = servo.getAngularPosition();
219  std::cout << "Servo reached position (deg): " << vpMath::deg(last_angle) << std::endl;
220 
221  std::cout << "Move to max position (deg): " << vpMath::deg(opt_angle_max) << " at " << vpMath::deg(opt_positioning_velocity) << " deg/s" << std::endl;
222  servo.setAngularPosition(opt_angle_max, opt_positioning_velocity);
223  // Estimate time to reach position
224  time_s = static_cast<int>(std::abs((opt_angle_max - last_angle) / opt_positioning_velocity) + 2);
225  std::this_thread::sleep_for(std::chrono::seconds(time_s));
226  last_angle = servo.getAngularPosition();
227  std::cout << "Servo reached position (deg): " << vpMath::deg(last_angle) << std::endl;
228 
229  return EXIT_SUCCESS;
230  }
231  catch (const vpException &e) {
232  std::cout << e.getMessage() << std::endl;
233  return EXIT_FAILURE;
234  }
235 }
236 
237 #else
238 int main()
239 {
240  std::cout << "ViSP doesn't support Pololu 3rd party library" << std::endl;
241 }
242 #endif
error that can be emitted by ViSP classes.
Definition: vpException.h:60
const char * getMessage() const
Definition: vpException.cpp:65
static double rad(double deg)
Definition: vpMath.h:129
static double deg(double rad)
Definition: vpMath.h:119
Interface for the Pololu Maestro USB Servo Controllers.
Definition: vpPololu.h:76