Visual Servoing Platform  version 3.6.1 under development (2025-01-20)
testPerformanceLUT.cpp

Test performance between iteration and LUT.

/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Test performance between iteration and LUT.
*/
#include <stdio.h>
#include <stdlib.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpMath.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/io/vpParseArgv.h>
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
// List of allowed command line options
#define GETOPTARGS "cdi:o:t:h"
/*
* Print the program options.
*
* \param name : Program name.
* \param badparam : Bad parameter name.
* \param ipath: Input image path.
* \param opath : Output image path.
* \param user : Username.
*/
void usage(const char *name, const char *badparam, const std::string &ipath, const std::string &opath,
const std::string &user)
{
fprintf(stdout, "\n\
Test performance between methods to iterate over pixel image.\n\
\n\
SYNOPSIS\n\
%s [-i <input image path>] [-o <output image path>] [-t <nb threads>]\n\
[-h]\n\
",
name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-i <input image path> %s\n\
Set image input path.\n\
From this path read \"Klimt/Klimt.pgm\"\n\
image.\n\
Setting the VISP_INPUT_IMAGE_PATH environment\n\
variable produces the same behaviour than using\n\
this option.\n\
\n\
-o <output image path> %s\n\
Set image output path.\n\
From this directory, creates the \"%s\"\n\
subdirectory depending on the username, where \n\
Klimt_grey.pgm output image is written.\n\
\n\
-t <nb threads> \n\
Set the number of threads to use for the computation.\n\
\n\
-h\n\
Print the help.\n\n",
ipath.c_str(), opath.c_str(), user.c_str());
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, std::string &ipath, std::string &opath, const std::string &user,
unsigned int &nbThreads)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'i':
ipath = optarg_;
break;
case 'o':
opath = optarg_;
break;
case 't':
nbThreads = (unsigned int)atoi(optarg_);
break;
case 'h':
usage(argv[0], nullptr, ipath, opath, user);
return false;
break;
case 'c':
case 'd':
break;
default:
usage(argv[0], optarg_, ipath, opath, user);
return false;
break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], nullptr, ipath, opath, user);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
unsigned char getRandomValues(unsigned char min, unsigned char max)
{
return static_cast<unsigned char>((max - min) * static_cast<double>(rand()) / static_cast<double>(RAND_MAX) + min);
}
void generateRandomImage(vpImage<unsigned char> &I, unsigned int min = 0, unsigned int max = 255)
{
for (unsigned int i = 0; i < I.getHeight(); ++i) {
for (unsigned int j = 0; j < I.getWidth(); ++j) {
I[i][j] = getRandomValues(min, max);
}
}
}
void generateRandomImage(vpImage<vpRGBa> &I, unsigned int min = 0, unsigned int max = 255)
{
for (unsigned int i = 0; i < I.getHeight(); ++i) {
for (unsigned int j = 0; j < I.getWidth(); ++j) {
I[i][j].R = getRandomValues(min, max);
I[i][j].G = getRandomValues(min, max);
I[i][j].B = getRandomValues(min, max);
I[i][j].A = getRandomValues(min, max);
}
}
}
void iterate_method1(vpImage<vpRGBa> &I, double alpha, double beta)
{
unsigned int size = I.getWidth() * I.getHeight();
unsigned char *ptrStart = (unsigned char *)I.bitmap;
unsigned char *ptrEnd = ptrStart + size * 4;
unsigned char *ptrCurrent = ptrStart;
while (ptrCurrent != ptrEnd) {
*ptrCurrent = vpMath::saturate<unsigned char>((*ptrCurrent) * alpha + beta);
++ptrCurrent;
}
}
void iterate_method1(vpImage<unsigned char> &I, double alpha, double beta)
{
unsigned int size = I.getWidth() * I.getHeight();
unsigned char *ptrStart = (unsigned char *)I.bitmap;
unsigned char *ptrEnd = ptrStart + size;
unsigned char *ptrCurrent = ptrStart;
while (ptrCurrent != ptrEnd) {
*ptrCurrent = vpMath::saturate<unsigned char>((*ptrCurrent) * alpha + beta);
++ptrCurrent;
}
}
void iterate_method2(vpImage<vpRGBa> &I, double alpha, double beta)
{
for (unsigned int i = 0; i < I.getHeight(); i++) {
for (unsigned int j = 0; j < I.getWidth(); j++) {
I[i][j].R = vpMath::saturate<unsigned char>(I[i][j].R * alpha + beta);
I[i][j].G = vpMath::saturate<unsigned char>(I[i][j].G * alpha + beta);
I[i][j].B = vpMath::saturate<unsigned char>(I[i][j].B * alpha + beta);
I[i][j].A = vpMath::saturate<unsigned char>(I[i][j].A * alpha + beta);
}
}
}
int main(int argc, const char **argv)
{
try {
std::string env_ipath;
std::string opt_ipath;
std::string opt_opath;
std::string ipath;
std::string opath;
std::string filename;
std::string username;
unsigned int nbThreads = 4;
// Get the visp-images-data package path or VISP_INPUT_IMAGE_PATH
// environment variable value
// Set the default input path
if (!env_ipath.empty())
ipath = env_ipath;
// Set the default output path
#if defined(_WIN32)
opt_opath = "C:/temp";
#else
opt_opath = "/tmp";
#endif
// Get the user login name
// Read the command line options
if (getOptions(argc, argv, opt_ipath, opt_opath, username, nbThreads) == false) {
return EXIT_FAILURE;
}
// Get the option values
if (!opt_ipath.empty())
ipath = opt_ipath;
if (!opt_opath.empty())
opath = opt_opath;
// Append to the output path string, the login name of the user
opath = vpIoTools::createFilePath(opath, username);
// Test if the output path exist. If no try to create it
if (vpIoTools::checkDirectory(opath) == false) {
try {
// Create the dirname
}
catch (...) {
usage(argv[0], nullptr, ipath, opt_opath, username);
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Cannot create " << opath << std::endl;
std::cerr << " Check your -o " << opt_opath << " option " << std::endl;
return EXIT_FAILURE;
}
}
// Compare ipath and env_ipath. If they differ, we take into account
// the input path coming from the command line option
if (!opt_ipath.empty() && !env_ipath.empty()) {
if (ipath != env_ipath) {
std::cout << std::endl << "WARNING: " << std::endl;
std::cout << " Since -i <visp image path=" << ipath << "> "
<< " is different from VISP_IMAGE_PATH=" << env_ipath << std::endl
<< " we skip the environment variable." << std::endl;
}
}
// Test if an input path is set
if (opt_ipath.empty() && env_ipath.empty()) {
usage(argv[0], nullptr, ipath, opt_opath, username);
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Use -i <visp image path> option or set VISP_INPUT_IMAGE_PATH " << std::endl
<< " environment variable to specify the location of the " << std::endl
<< " image path where test images are located." << std::endl
<< std::endl;
return EXIT_FAILURE;
}
double alpha = 1.5, beta = -30.0;
unsigned int nbIterations = 10;
//
// Here starts really the test
//
if (1) {
std::cout << "\n** Test LUT on color image" << std::endl;
// Create a color image
vpImage<vpRGBa> I_iterate1, I_iterate2, I_lut;
// Load a color image from the disk
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.ppm");
std::cout << "Read image: " << filename << std::endl;
vpImageIo::read(I_iterate1, filename);
vpImageIo::read(I_iterate2, filename);
vpImageIo::read(I_lut, filename);
std::cout << "Image size: " << I_iterate1.getWidth() << "x" << I_iterate1.getHeight() << std::endl;
// Iterate method 1
std::cout << "Run test n°1 " << nbIterations << " times" << std::endl;
double t_iterate1 = vpTime::measureTimeMs();
for (unsigned int cpt = 0; cpt < nbIterations; cpt++) {
iterate_method1(I_iterate1, alpha, beta);
}
t_iterate1 = vpTime::measureTimeMs() - t_iterate1;
std::cout << " Total time: " << t_iterate1 << " ms ; Mean time: "
<< (t_iterate1 / nbIterations) << " ms" << std::endl;
filename = vpIoTools::createFilePath(opath, "Klimt_performance_iterate1.ppm");
std::cout << " Save " << filename << std::endl;
vpImageIo::write(I_iterate1, filename);
// Iterate method 2
std::cout << "Run test n°2 " << nbIterations << " times" << std::endl;
double t_iterate2 = vpTime::measureTimeMs();
for (unsigned int cpt = 0; cpt < nbIterations; cpt++) {
iterate_method2(I_iterate2, alpha, beta);
}
t_iterate2 = vpTime::measureTimeMs() - t_iterate2;
std::cout << " Total time: " << t_iterate2 << " ms ; Mean time: " << (t_iterate2 / nbIterations) << " ms" << std::endl;
filename = vpIoTools::createFilePath(opath, "Klimt_performance_iterate2.ppm");
std::cout << " Save " << filename << std::endl;
vpImageIo::write(I_iterate2, filename);
// Construct the LUT
vpRGBa lut[256];
for (unsigned int i = 0; i < 256; i++) {
lut[i].R = vpMath::saturate<unsigned char>(alpha * i + beta);
lut[i].G = vpMath::saturate<unsigned char>(alpha * i + beta);
lut[i].B = vpMath::saturate<unsigned char>(alpha * i + beta);
lut[i].A = vpMath::saturate<unsigned char>(alpha * i + beta);
}
// LUT method
std::cout << "Run test n°3 " << nbIterations << " times" << std::endl;
double t_lut = vpTime::measureTimeMs();
for (unsigned int cpt = 0; cpt < nbIterations; cpt++) {
I_lut.performLut(lut, nbThreads);
}
t_lut = vpTime::measureTimeMs() - t_lut;
std::cout << " Total time: " << t_lut << " ms ; Mean time: " << (t_lut / nbIterations) << " ms" << std::endl;
filename = vpIoTools::createFilePath(opath, "Klimt_performance_lut.ppm");
std::cout << " Save " << filename << std::endl;
vpImageIo::write(I_lut, filename);
if ((I_iterate1 == I_iterate2) && (I_iterate1 == I_lut)) {
std::cerr << "Color images are the same" << std::endl;
}
else {
std::cerr << "Color images are different!" << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
}
{
// Test LUT on grayscale image
std::cout << "\n** Test LUT on grayscale image" << std::endl;
vpImage<unsigned char> I_iterate_grayscale1, I_lut_grayscale;
// Load a grayscale image from the disk
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.pgm");
std::cout << "Read image: " << filename << std::endl;
vpImageIo::read(I_iterate_grayscale1, filename);
vpImageIo::read(I_lut_grayscale, filename);
std::cout << "Image size: " << I_lut_grayscale.getWidth() << "x" << I_lut_grayscale.getHeight() << std::endl;
// Iterate method 1 on grayscale
std::cout << "Run test n°1 " << nbIterations << " times" << std::endl;
double t_iterate_grayscale1 = vpTime::measureTimeMs();
for (unsigned int cpt = 0; cpt < nbIterations; cpt++) {
iterate_method1(I_iterate_grayscale1, alpha, beta);
}
t_iterate_grayscale1 = vpTime::measureTimeMs() - t_iterate_grayscale1;
std::cout << " Total time: " << t_iterate_grayscale1 << " ms ; Mean time: "
<< (t_iterate_grayscale1 / nbIterations) << " ms" << std::endl;
filename = vpIoTools::createFilePath(opath, "Klimt_performance_iterate1_grayscale.pgm");
std::cout << " Save result in " << filename << std::endl;
vpImageIo::write(I_iterate_grayscale1, filename);
// Construct the LUT
unsigned char lut[256];
for (unsigned int i = 0; i < 256; i++) {
lut[i] = vpMath::saturate<unsigned char>(alpha * i + beta);
}
// LUT method on grayscale
std::cout << "Run test n°2 " << nbIterations << " times with " << nbThreads << " threads" << std::endl;
double t_lut_grayscale = vpTime::measureTimeMs();
for (unsigned int cpt = 0; cpt < nbIterations; cpt++) {
I_lut_grayscale.performLut(lut, nbThreads);
}
t_lut_grayscale = vpTime::measureTimeMs() - t_lut_grayscale;
std::cout << " Total time: " << t_lut_grayscale << " ms ; Mean time: "
<< (t_lut_grayscale / nbIterations) << " ms" << std::endl;
filename = vpIoTools::createFilePath(opath, "Klimt_performance_lut_grayscale.pgm");
std::cout << " Save result in " << filename << std::endl;
vpImageIo::write(I_lut_grayscale, filename);
// Check grayscale image
if (I_lut_grayscale == I_iterate_grayscale1) {
std::cout << "Grayscale images are same" << std::endl;
}
else {
std::cerr << "Grayscale images are different!" << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
}
{
std::cout << "\n** Test multi-threaded LUT on color image" << std::endl;
vpImage<vpRGBa> I_lut_multi, I_lut_single;
// Load a color image from the disk
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.ppm");
std::cout << "Read image: " << filename << std::endl;
vpImageIo::read(I_lut_multi, filename);
// Construct the LUT
vpRGBa lut[256];
for (unsigned int i = 0; i < 256; i++) {
lut[i].R = vpMath::saturate<unsigned char>(alpha * i + beta);
lut[i].G = vpMath::saturate<unsigned char>(alpha * i + beta);
lut[i].B = vpMath::saturate<unsigned char>(alpha * i + beta);
lut[i].A = vpMath::saturate<unsigned char>(alpha * i + beta);
}
// Computation time on color image
std::cout << "Run test n°1 " << nbIterations* 10 << " times with " << nbThreads << " threads" << std::endl;
double t_lut_multithread = vpTime::measureTimeMs();
for (unsigned int cpt = 0; cpt < nbIterations * 10; cpt++) {
I_lut_multi.performLut(lut, nbThreads);
}
t_lut_multithread = vpTime::measureTimeMs() - t_lut_multithread;
filename = vpIoTools::createFilePath(opath, "Klimt_performance_color_multi.ppm");
std::cout << " Save result in " << filename << std::endl;
vpImageIo::write(I_lut_multi, filename);
vpImageIo::read(I_lut_single, filename);
std::cout << "Run test n°2 " << nbIterations* 10 << " times in a single thread" << std::endl;
double t_lut_singlethread = vpTime::measureTimeMs();
for (unsigned int cpt = 0; cpt < nbIterations * 10; cpt++) {
I_lut_single.performLut(lut, 1);
}
t_lut_singlethread = vpTime::measureTimeMs() - t_lut_singlethread;
filename = vpIoTools::createFilePath(opath, "Klimt_performance_color_single.ppm");
std::cout << " Save result in " << filename << std::endl;
vpImageIo::write(I_lut_single, filename);
// Check color image
if (I_lut_multi == I_lut_single) {
std::cout << "Color images are the same" << std::endl;
std::cout << "Single-thread / multi-thread (color) gain: " << t_lut_singlethread / t_lut_multithread << std::endl;
}
else {
std::cerr << "Color images are different!" << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
}
{
std::cout << "\n** Test multi-threaded LUT on gray image" << std::endl;
vpImage<unsigned char> I_lut_grayscale_multi, I_lut_grayscale_single;
// Load a gray image from the disk
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.pgm");
std::cout << "Read image: " << filename << std::endl;
vpImageIo::read(I_lut_grayscale_multi, filename);
// Construct the LUT
unsigned char lut[256];
for (unsigned int i = 0; i < 256; i++) {
lut[i] = vpMath::saturate<unsigned char>(alpha * i + beta);
}
// Computation time on grayscale image
std::cout << "Run test n°1 " << nbIterations* 10 << " times with " << nbThreads << " threads" << std::endl;
double t_lut_multithread = vpTime::measureTimeMs();
for (unsigned int cpt = 0; cpt < nbIterations * 10; cpt++) {
I_lut_grayscale_multi.performLut(lut, nbThreads);
}
t_lut_multithread = vpTime::measureTimeMs() - t_lut_multithread;
filename = vpIoTools::createFilePath(opath, "Klimt_performance_gray_multi.pgm");
std::cout << " Save result in " << filename << std::endl;
vpImageIo::write(I_lut_grayscale_multi, filename);
vpImageIo::read(I_lut_grayscale_single, filename);
std::cout << "Run test n°2 " << nbIterations* 10 << " times in a single thread" << std::endl;
double t_lut_singlethread = vpTime::measureTimeMs();
for (unsigned int cpt = 0; cpt < nbIterations * 10; cpt++) {
I_lut_grayscale_single.performLut(lut, 1);
}
t_lut_singlethread = vpTime::measureTimeMs() - t_lut_singlethread;
filename = vpIoTools::createFilePath(opath, "Klimt_performance_gray_single.pgm");
std::cout << " Save result in " << filename << std::endl;
vpImageIo::write(I_lut_grayscale_single, filename);
// Check color image
if (I_lut_grayscale_multi == I_lut_grayscale_single) {
std::cout << "Gray images are the same" << std::endl;
std::cout << "Single-thread / multi-thread (color) gain: " << t_lut_singlethread / t_lut_multithread << std::endl;
}
else {
std::cerr << "Color images are different!" << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
}
{
std::cout << "\n** Test multi-threaded LUT on gray image which size is not divisible by 8" << std::endl;
// Check performLut with multithreading and image size not divisible by 8
vpImage<unsigned char> I_test_grayscale_multi(49, 7), I_test_grayscale_single;
generateRandomImage(I_test_grayscale_multi);
I_test_grayscale_single = I_test_grayscale_multi;
// Construct the LUT
unsigned char lut_grayscale[256];
for (unsigned int i = 0; i < 256; i++) {
lut_grayscale[i] = vpMath::saturate<unsigned char>(alpha * i + beta);
}
std::cout << "Run test n°1 with " << nbThreads << " threads" << std::endl;
I_test_grayscale_multi.performLut(lut_grayscale, nbThreads);
std::cout << "Run test n°2 single threads" << std::endl;
I_test_grayscale_single.performLut(lut_grayscale, 1);
// Check gray images
if (I_test_grayscale_multi == I_test_grayscale_single) {
std::cout << "Gray images are the same" << std::endl;
}
else {
std::cerr << "Gray images are different!" << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
}
{
std::cout << "\n** Test multi-threaded LUT on color image which size is not divisible by 8" << std::endl;
vpImage<vpRGBa> I_test_color_multi(49, 7), I_test_color_single;
generateRandomImage(I_test_color_multi);
I_test_color_single = I_test_color_multi;
// Construct the LUT
vpRGBa lut_color[256];
for (unsigned int i = 0; i < 256; i++) {
lut_color[i].R = vpMath::saturate<unsigned char>(alpha * i + beta);
lut_color[i].G = vpMath::saturate<unsigned char>(alpha * i + beta);
lut_color[i].B = vpMath::saturate<unsigned char>(alpha * i + beta);
lut_color[i].A = vpMath::saturate<unsigned char>(alpha * i + beta);
}
std::cout << "Run test n°1 with " << nbThreads << " threads" << std::endl;
I_test_color_multi.performLut(lut_color, nbThreads);
std::cout << "Run test n°2 single threads" << std::endl;
I_test_color_single.performLut(lut_color, 1);
// Check color images
if (I_test_color_multi == I_test_color_single) {
std::cout << "Color images are the same" << std::endl;
}
else {
std::cerr << "Color images are different!" << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
}
std::cout << "Test succeed" << std::endl;
return EXIT_SUCCESS;
}
catch (const vpException &e) {
std::cerr << "Catch an exception: " << e.what() << std::endl;
return EXIT_FAILURE;
}
}
error that can be emitted by ViSP classes.
Definition: vpException.h:60
const char * what() const
Definition: vpException.cpp:71
static void read(vpImage< unsigned char > &I, const std::string &filename, int backend=IO_DEFAULT_BACKEND)
Definition: vpImageIo.cpp:147
static void write(const vpImage< unsigned char > &I, const std::string &filename, int backend=IO_DEFAULT_BACKEND)
Definition: vpImageIo.cpp:291
unsigned int getWidth() const
Definition: vpImage.h:242
void performLut(const Type(&lut)[256], unsigned int nbThreads=1)
Definition: vpImage_lut.h:176
Type * bitmap
points toward the bitmap
Definition: vpImage.h:135
unsigned int getHeight() const
Definition: vpImage.h:181
static std::string getViSPImagesDataPath()
Definition: vpIoTools.cpp:1053
static bool checkDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:396
static std::string getUserName()
Definition: vpIoTools.cpp:285
static std::string createFilePath(const std::string &parent, const std::string &child)
Definition: vpIoTools.cpp:1427
static void makeDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:550
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:70
Definition: vpRGBa.h:70
unsigned char B
Blue component.
Definition: vpRGBa.h:187
unsigned char R
Red component.
Definition: vpRGBa.h:185
unsigned char G
Green component.
Definition: vpRGBa.h:186
unsigned char A
Additional component.
Definition: vpRGBa.h:188
VISP_EXPORT double measureTimeMs()