Test performance between iteration and LUT.
#include <stdio.h>
#include <stdlib.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpMath.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/io/vpParseArgv.h>
#ifdef ENABLE_VISP_NAMESPACE
#endif
#define GETOPTARGS "cdi:o:t:h"
void usage(const char *name, const char *badparam, const std::string &ipath, const std::string &opath,
const std::string &user)
{
fprintf(stdout, "\n\
Test performance between methods to iterate over pixel image.\n\
\n\
SYNOPSIS\n\
%s [-i <input image path>] [-o <output image path>] [-t <nb threads>]\n\
[-h]\n\
",
name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-i <input image path> %s\n\
Set image input path.\n\
From this path read \"Klimt/Klimt.pgm\"\n\
image.\n\
Setting the VISP_INPUT_IMAGE_PATH environment\n\
variable produces the same behaviour than using\n\
this option.\n\
\n\
-o <output image path> %s\n\
Set image output path.\n\
From this directory, creates the \"%s\"\n\
subdirectory depending on the username, where \n\
Klimt_grey.pgm output image is written.\n\
\n\
-t <nb threads> \n\
Set the number of threads to use for the computation.\n\
\n\
-h\n\
Print the help.\n\n",
ipath.c_str(), opath.c_str(), user.c_str());
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, std::string &ipath, std::string &opath, const std::string &user,
unsigned int &nbThreads)
{
const char *optarg_;
int c;
switch (c) {
case 'i':
ipath = optarg_;
break;
case 'o':
opath = optarg_;
break;
case 't':
nbThreads = (unsigned int)atoi(optarg_);
break;
case 'h':
usage(argv[0], nullptr, ipath, opath, user);
return false;
break;
case 'c':
case 'd':
break;
default:
usage(argv[0], optarg_, ipath, opath, user);
return false;
break;
}
}
if ((c == 1) || (c == -1)) {
usage(argv[0], nullptr, ipath, opath, user);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
unsigned char getRandomValues(unsigned char min, unsigned char max)
{
return static_cast<unsigned char>((max - min) * static_cast<double>(rand()) / static_cast<double>(RAND_MAX) + min);
}
{
for (
unsigned int i = 0; i < I.
getHeight(); ++i) {
for (
unsigned int j = 0; j < I.
getWidth(); ++j) {
I[i][j] = getRandomValues(min, max);
}
}
}
void generateRandomImage(
vpImage<vpRGBa> &I,
unsigned int min = 0,
unsigned int max = 255)
{
for (
unsigned int i = 0; i < I.
getHeight(); ++i) {
for (
unsigned int j = 0; j < I.
getWidth(); ++j) {
I[i][j].R = getRandomValues(min, max);
I[i][j].G = getRandomValues(min, max);
I[i][j].B = getRandomValues(min, max);
I[i][j].A = getRandomValues(min, max);
}
}
}
{
unsigned char *ptrStart = (
unsigned char *)I.
bitmap;
unsigned char *ptrEnd = ptrStart + size * 4;
unsigned char *ptrCurrent = ptrStart;
while (ptrCurrent != ptrEnd) {
*ptrCurrent = vpMath::saturate<unsigned char>((*ptrCurrent) * alpha + beta);
++ptrCurrent;
}
}
{
unsigned char *ptrStart = (
unsigned char *)I.
bitmap;
unsigned char *ptrEnd = ptrStart + size;
unsigned char *ptrCurrent = ptrStart;
while (ptrCurrent != ptrEnd) {
*ptrCurrent = vpMath::saturate<unsigned char>((*ptrCurrent) * alpha + beta);
++ptrCurrent;
}
}
{
for (
unsigned int i = 0; i < I.
getHeight(); i++) {
for (
unsigned int j = 0; j < I.
getWidth(); j++) {
I[i][j].R = vpMath::saturate<unsigned char>(I[i][j].R * alpha + beta);
I[i][j].G = vpMath::saturate<unsigned char>(I[i][j].G * alpha + beta);
I[i][j].B = vpMath::saturate<unsigned char>(I[i][j].B * alpha + beta);
I[i][j].A = vpMath::saturate<unsigned char>(I[i][j].A * alpha + beta);
}
}
}
int main(int argc, const char **argv)
{
try {
std::string env_ipath;
std::string opt_ipath;
std::string opt_opath;
std::string ipath;
std::string opath;
std::string filename;
std::string username;
unsigned int nbThreads = 4;
if (!env_ipath.empty())
ipath = env_ipath;
#if defined(_WIN32)
opt_opath = "C:/temp";
#else
opt_opath = "/tmp";
#endif
if (getOptions(argc, argv, opt_ipath, opt_opath, username, nbThreads) == false) {
return EXIT_FAILURE;
}
if (!opt_ipath.empty())
ipath = opt_ipath;
if (!opt_opath.empty())
opath = opt_opath;
try {
}
catch (...) {
usage(argv[0], nullptr, ipath, opt_opath, username);
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Cannot create " << opath << std::endl;
std::cerr << " Check your -o " << opt_opath << " option " << std::endl;
return EXIT_FAILURE;
}
}
if (!opt_ipath.empty() && !env_ipath.empty()) {
if (ipath != env_ipath) {
std::cout << std::endl << "WARNING: " << std::endl;
std::cout << " Since -i <visp image path=" << ipath << "> "
<< " is different from VISP_IMAGE_PATH=" << env_ipath << std::endl
<< " we skip the environment variable." << std::endl;
}
}
if (opt_ipath.empty() && env_ipath.empty()) {
usage(argv[0], nullptr, ipath, opt_opath, username);
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Use -i <visp image path> option or set VISP_INPUT_IMAGE_PATH " << std::endl
<< " environment variable to specify the location of the " << std::endl
<< " image path where test images are located." << std::endl
<< std::endl;
return EXIT_FAILURE;
}
double alpha = 1.5, beta = -30.0;
unsigned int nbIterations = 10;
if (1) {
std::cout << "\n** Test LUT on color image" << std::endl;
std::cout << "Read image: " << filename << std::endl;
std::cout <<
"Image size: " << I_iterate1.
getWidth() <<
"x" << I_iterate1.
getHeight() << std::endl;
std::cout << "Run test n°1 " << nbIterations << " times" << std::endl;
for (unsigned int cpt = 0; cpt < nbIterations; cpt++) {
iterate_method1(I_iterate1, alpha, beta);
}
std::cout << " Total time: " << t_iterate1 << " ms ; Mean time: "
<< (t_iterate1 / nbIterations) << " ms" << std::endl;
std::cout << " Save " << filename << std::endl;
std::cout << "Run test n°2 " << nbIterations << " times" << std::endl;
for (unsigned int cpt = 0; cpt < nbIterations; cpt++) {
iterate_method2(I_iterate2, alpha, beta);
}
std::cout << " Total time: " << t_iterate2 << " ms ; Mean time: " << (t_iterate2 / nbIterations) << " ms" << std::endl;
std::cout << " Save " << filename << std::endl;
for (unsigned int i = 0; i < 256; i++) {
lut[i].
R = vpMath::saturate<unsigned char>(alpha * i + beta);
lut[i].
G = vpMath::saturate<unsigned char>(alpha * i + beta);
lut[i].
B = vpMath::saturate<unsigned char>(alpha * i + beta);
lut[i].
A = vpMath::saturate<unsigned char>(alpha * i + beta);
}
std::cout << "Run test n°3 " << nbIterations << " times" << std::endl;
for (unsigned int cpt = 0; cpt < nbIterations; cpt++) {
}
std::cout << " Total time: " << t_lut << " ms ; Mean time: " << (t_lut / nbIterations) << " ms" << std::endl;
std::cout << " Save " << filename << std::endl;
if ((I_iterate1 == I_iterate2) && (I_iterate1 == I_lut)) {
std::cerr << "Color images are the same" << std::endl;
}
else {
std::cerr << "Color images are different!" << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
}
{
std::cout << "\n** Test LUT on grayscale image" << std::endl;
std::cout << "Read image: " << filename << std::endl;
std::cout <<
"Image size: " << I_lut_grayscale.
getWidth() <<
"x" << I_lut_grayscale.
getHeight() << std::endl;
std::cout << "Run test n°1 " << nbIterations << " times" << std::endl;
for (unsigned int cpt = 0; cpt < nbIterations; cpt++) {
iterate_method1(I_iterate_grayscale1, alpha, beta);
}
std::cout << " Total time: " << t_iterate_grayscale1 << " ms ; Mean time: "
<< (t_iterate_grayscale1 / nbIterations) << " ms" << std::endl;
std::cout << " Save result in " << filename << std::endl;
unsigned char lut[256];
for (unsigned int i = 0; i < 256; i++) {
lut[i] = vpMath::saturate<unsigned char>(alpha * i + beta);
}
std::cout << "Run test n°2 " << nbIterations << " times with " << nbThreads << " threads" << std::endl;
for (unsigned int cpt = 0; cpt < nbIterations; cpt++) {
}
std::cout << " Total time: " << t_lut_grayscale << " ms ; Mean time: "
<< (t_lut_grayscale / nbIterations) << " ms" << std::endl;
std::cout << " Save result in " << filename << std::endl;
if (I_lut_grayscale == I_iterate_grayscale1) {
std::cout << "Grayscale images are same" << std::endl;
}
else {
std::cerr << "Grayscale images are different!" << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
}
{
std::cout << "\n** Test multi-threaded LUT on color image" << std::endl;
std::cout << "Read image: " << filename << std::endl;
for (unsigned int i = 0; i < 256; i++) {
lut[i].
R = vpMath::saturate<unsigned char>(alpha * i + beta);
lut[i].
G = vpMath::saturate<unsigned char>(alpha * i + beta);
lut[i].
B = vpMath::saturate<unsigned char>(alpha * i + beta);
lut[i].
A = vpMath::saturate<unsigned char>(alpha * i + beta);
}
std::cout << "Run test n°1 " << nbIterations* 10 << " times with " << nbThreads << " threads" << std::endl;
for (unsigned int cpt = 0; cpt < nbIterations * 10; cpt++) {
}
std::cout << " Save result in " << filename << std::endl;
std::cout << "Run test n°2 " << nbIterations* 10 << " times in a single thread" << std::endl;
for (unsigned int cpt = 0; cpt < nbIterations * 10; cpt++) {
}
std::cout << " Save result in " << filename << std::endl;
if (I_lut_multi == I_lut_single) {
std::cout << "Color images are the same" << std::endl;
std::cout << "Single-thread / multi-thread (color) gain: " << t_lut_singlethread / t_lut_multithread << std::endl;
}
else {
std::cerr << "Color images are different!" << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
}
{
std::cout << "\n** Test multi-threaded LUT on gray image" << std::endl;
std::cout << "Read image: " << filename << std::endl;
unsigned char lut[256];
for (unsigned int i = 0; i < 256; i++) {
lut[i] = vpMath::saturate<unsigned char>(alpha * i + beta);
}
std::cout << "Run test n°1 " << nbIterations* 10 << " times with " << nbThreads << " threads" << std::endl;
for (unsigned int cpt = 0; cpt < nbIterations * 10; cpt++) {
}
std::cout << " Save result in " << filename << std::endl;
std::cout << "Run test n°2 " << nbIterations* 10 << " times in a single thread" << std::endl;
for (unsigned int cpt = 0; cpt < nbIterations * 10; cpt++) {
}
std::cout << " Save result in " << filename << std::endl;
if (I_lut_grayscale_multi == I_lut_grayscale_single) {
std::cout << "Gray images are the same" << std::endl;
std::cout << "Single-thread / multi-thread (color) gain: " << t_lut_singlethread / t_lut_multithread << std::endl;
}
else {
std::cerr << "Color images are different!" << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
}
{
std::cout << "\n** Test multi-threaded LUT on gray image which size is not divisible by 8" << std::endl;
generateRandomImage(I_test_grayscale_multi);
I_test_grayscale_single = I_test_grayscale_multi;
unsigned char lut_grayscale[256];
for (unsigned int i = 0; i < 256; i++) {
lut_grayscale[i] = vpMath::saturate<unsigned char>(alpha * i + beta);
}
std::cout << "Run test n°1 with " << nbThreads << " threads" << std::endl;
I_test_grayscale_multi.performLut(lut_grayscale, nbThreads);
std::cout << "Run test n°2 single threads" << std::endl;
I_test_grayscale_single.
performLut(lut_grayscale, 1);
if (I_test_grayscale_multi == I_test_grayscale_single) {
std::cout << "Gray images are the same" << std::endl;
}
else {
std::cerr << "Gray images are different!" << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
}
{
std::cout << "\n** Test multi-threaded LUT on color image which size is not divisible by 8" << std::endl;
generateRandomImage(I_test_color_multi);
I_test_color_single = I_test_color_multi;
for (unsigned int i = 0; i < 256; i++) {
lut_color[i].
R = vpMath::saturate<unsigned char>(alpha * i + beta);
lut_color[i].
G = vpMath::saturate<unsigned char>(alpha * i + beta);
lut_color[i].
B = vpMath::saturate<unsigned char>(alpha * i + beta);
lut_color[i].
A = vpMath::saturate<unsigned char>(alpha * i + beta);
}
std::cout << "Run test n°1 with " << nbThreads << " threads" << std::endl;
I_test_color_multi.performLut(lut_color, nbThreads);
std::cout << "Run test n°2 single threads" << std::endl;
if (I_test_color_multi == I_test_color_single) {
std::cout << "Color images are the same" << std::endl;
}
else {
std::cerr << "Color images are different!" << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
}
std::cout << "Test succeed" << std::endl;
return EXIT_SUCCESS;
}
std::cerr <<
"Catch an exception: " << e.
what() << std::endl;
return EXIT_FAILURE;
}
}
error that can be emitted by ViSP classes.
const char * what() const
static void read(vpImage< unsigned char > &I, const std::string &filename, int backend=IO_DEFAULT_BACKEND)
static void write(const vpImage< unsigned char > &I, const std::string &filename, int backend=IO_DEFAULT_BACKEND)
unsigned int getWidth() const
void performLut(const Type(&lut)[256], unsigned int nbThreads=1)
Type * bitmap
points toward the bitmap
unsigned int getHeight() const
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
unsigned char B
Blue component.
unsigned char R
Red component.
unsigned char G
Green component.
unsigned char A
Additionnal component.
VISP_EXPORT double measureTimeMs()