Visual Servoing Platform  version 3.5.0 under development (2022-02-15)
testGenericTracker.cpp

Regression test for MBT.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2019 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Regression test for MBT.
*
*****************************************************************************/
#include <cstdlib>
#include <iostream>
#include <visp3/core/vpConfig.h>
#if defined(VISP_HAVE_MODULE_MBT) \
&& (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
#include <type_traits>
#endif
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpImageDraw.h>
#include <visp3/core/vpFont.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayD3D.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/mbt/vpMbGenericTracker.h>
#define GETOPTARGS "i:dsclt:e:DmCh"
namespace
{
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Regression test for vpGenericTracker.\n\
\n\
SYNOPSIS\n\
%s [-i <test image path>] [-c] [-d] [-s] [-h] [-l] \n\
[-t <tracker type>] [-e <last frame index>] [-D] [-m] [-C]\n", name);
fprintf(stdout, "\n\
OPTIONS: \n\
-i <input image path> \n\
Set image input path.\n\
These images come from ViSP-images-x.y.z.tar.gz available \n\
on the ViSP website.\n\
Setting the VISP_INPUT_IMAGE_PATH environment\n\
variable produces the same behavior than using\n\
this option.\n\
\n\
-d \n\
Turn off the display.\n\
\n\
-s \n\
If display is turn off, tracking results are saved in a video folder.\n\
\n\
-c\n\
Disable the mouse click. Useful to automate the \n\
execution of this program without human intervention.\n\
\n\
-t <tracker type>\n\
Set tracker type (<1 (Edge)>, <2 (KLT)>, <3 (both)>) for color sensor.\n\
\n\
-l\n\
Use the scanline for visibility tests.\n\
\n\
-e <last frame index>\n\
Specify the index of the last frame. Once reached, the tracking is stopped.\n\
\n\
-D \n\
Use depth.\n\
\n\
-m \n\
Set a tracking mask.\n\
\n\
-C \n\
Use color images.\n\
\n\
-h \n\
Print the help.\n\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, std::string &ipath, bool &click_allowed, bool &display, bool &save,
bool &useScanline, int &trackerType, int &lastFrame, bool &use_depth, bool &use_mask,
bool &use_color_image)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'i':
ipath = optarg_;
break;
case 'c':
click_allowed = false;
break;
case 'd':
display = false;
break;
case 's':
save = true;
break;
case 'l':
useScanline = true;
break;
case 't':
trackerType = atoi(optarg_);
break;
case 'e':
lastFrame = atoi(optarg_);
break;
case 'D':
use_depth = true;
break;
case 'm':
use_mask = true;
break;
case 'C':
use_color_image = true;
break;
case 'h':
usage(argv[0], NULL);
return false;
break;
default:
usage(argv[0], optarg_);
return false;
break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
template <typename Type>
bool read_data(const std::string &input_directory, int cpt, const vpCameraParameters &cam_depth,
std::vector<vpColVector> &pointcloud, vpHomogeneousMatrix &cMo)
{
#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
static_assert(std::is_same<Type, unsigned char>::value || std::is_same<Type, vpRGBa>::value,
"Template function supports only unsigned char and vpRGBa images!");
#endif
char buffer[256];
sprintf(buffer, std::string(input_directory + "/Images/Image_%04d.pgm").c_str(), cpt);
std::string image_filename = buffer;
sprintf(buffer, std::string(input_directory + "/Depth/Depth_%04d.bin").c_str(), cpt);
std::string depth_filename = buffer;
sprintf(buffer, std::string(input_directory + "/CameraPose/Camera_%03d.txt").c_str(), cpt);
std::string pose_filename = buffer;
if (!vpIoTools::checkFilename(image_filename) || !vpIoTools::checkFilename(depth_filename)
|| !vpIoTools::checkFilename(pose_filename))
return false;
vpImageIo::read(I, image_filename);
unsigned int depth_width = 0, depth_height = 0;
std::ifstream file_depth(depth_filename.c_str(), std::ios::in | std::ios::binary);
if (!file_depth.is_open())
return false;
vpIoTools::readBinaryValueLE(file_depth, depth_height);
vpIoTools::readBinaryValueLE(file_depth, depth_width);
I_depth.resize(depth_height, depth_width);
pointcloud.resize(depth_height*depth_width);
const float depth_scale = 0.000030518f;
for (unsigned int i = 0; i < I_depth.getHeight(); i++) {
for (unsigned int j = 0; j < I_depth.getWidth(); j++) {
vpIoTools::readBinaryValueLE(file_depth, I_depth[i][j]);
double x = 0.0, y = 0.0, Z = I_depth[i][j] * depth_scale;
vpPixelMeterConversion::convertPoint(cam_depth, j, i, x, y);
vpColVector pt3d(4, 1.0);
pt3d[0] = x*Z;
pt3d[1] = y*Z;
pt3d[2] = Z;
pointcloud[i*I_depth.getWidth()+j] = pt3d;
}
}
std::ifstream file_pose(pose_filename.c_str());
if (!file_pose.is_open()) {
return false;
}
for (unsigned int i = 0; i < 4; i++) {
for (unsigned int j = 0; j < 4; j++) {
file_pose >> cMo[i][j];
}
}
return true;
}
void convert(const vpImage<vpRGBa> &src, vpImage<vpRGBa> &dst)
{
dst = src;
}
void convert(const vpImage<unsigned char> &src, vpImage<vpRGBa> &dst)
{
}
template <typename Type>
bool run(const std::string &input_directory,
bool opt_click_allowed, bool opt_display, bool useScanline, int trackerType_image,
int opt_lastFrame, bool use_depth, bool use_mask, bool save) {
#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
static_assert(std::is_same<Type, unsigned char>::value || std::is_same<Type, vpRGBa>::value,
"Template function supports only unsigned char and vpRGBa images!");
#endif
// Initialise a display
#if defined VISP_HAVE_X11
vpDisplayX display1, display2;
#elif defined VISP_HAVE_GDI
vpDisplayGDI display1, display2;
#elif defined VISP_HAVE_OPENCV
vpDisplayOpenCV display1, display2;
#elif defined VISP_HAVE_D3D9
vpDisplayD3D display1, display2;
#elif defined VISP_HAVE_GTK
vpDisplayGTK display1, display2;
#else
opt_display = false;
#endif
std::vector<int> tracker_type(2);
tracker_type[0] = trackerType_image;
vpMbGenericTracker tracker(tracker_type);
std::string configFileCam1 = input_directory + std::string("/Config/chateau.xml");
std::string configFileCam2 = input_directory + std::string("/Config/chateau_depth.xml");
std::cout << "Load config file for camera 1: " << configFileCam1 << std::endl;
std::cout << "Load config file for camera 2: " << configFileCam2 << std::endl;
tracker.loadConfigFile(configFileCam1, configFileCam2);
#if 0
// Corresponding parameters manually set to have an example code
{
vpCameraParameters cam_color, cam_depth;
cam_color.initPersProjWithoutDistortion(700.0, 700.0, 320.0, 240.0);
cam_depth.initPersProjWithoutDistortion(700.0, 700.0, 320.0, 240.0);
tracker.setCameraParameters(cam_color, cam_depth);
}
// Edge
vpMe me;
me.setMaskSize(5);
me.setMaskNumber(180);
me.setRange(8);
me.setThreshold(10000);
me.setMu1(0.5);
me.setMu2(0.5);
tracker.setMovingEdge(me);
// Klt
#if defined(VISP_HAVE_MODULE_KLT) && (defined(VISP_HAVE_OPENCV) && (VISP_HAVE_OPENCV_VERSION >= 0x020100))
tracker.setKltMaskBorder(5);
klt.setMaxFeatures(10000);
klt.setWindowSize(5);
klt.setQuality(0.01);
klt.setBlockSize(3);
tracker.setKltOpencv(klt);
#endif
// Depth
tracker.setAngleAppear(vpMath::rad(85.0));
tracker.setNearClippingDistance(0.01);
tracker.setFarClippingDistance(2.0);
#endif
#ifdef VISP_HAVE_COIN3D
tracker.loadModel(input_directory + "/Models/chateau.wrl", input_directory + "/Models/chateau.cao");
#else
tracker.loadModel(input_directory + "/Models/chateau.cao", input_directory + "/Models/chateau.cao");
#endif
T[0][0] = -1;
T[0][3] = -0.2;
T[1][1] = 0;
T[1][2] = 1;
T[1][3] = 0.12;
T[2][1] = 1;
T[2][2] = 0;
T[2][3] = -0.15;
tracker.loadModel(input_directory + "/Models/cube.cao", false, T);
vpCameraParameters cam_color, cam_depth;
tracker.getCameraParameters(cam_color, cam_depth);
tracker.setDisplayFeatures(true);
tracker.setScanLineVisibilityTest(useScanline);
std::map<int, std::pair<double, double> > map_thresh;
//Take the highest thresholds between all CI machines
#ifdef VISP_HAVE_COIN3D
= useScanline ? std::pair<double, double>(0.005, 3.9) : std::pair<double, double>(0.007, 3.7);
#if defined(VISP_HAVE_MODULE_KLT) && (defined(VISP_HAVE_OPENCV) && (VISP_HAVE_OPENCV_VERSION >= 0x020100))
= useScanline ? std::pair<double, double>(0.007, 1.9) : std::pair<double, double>(0.007, 1.8);
= useScanline ? std::pair<double, double>(0.005, 3.5) : std::pair<double, double>(0.006, 3.4);
#endif
= useScanline ? std::pair<double, double>(0.003, 1.7) : std::pair<double, double>(0.002, 0.8);
#if defined(VISP_HAVE_MODULE_KLT) && (defined(VISP_HAVE_OPENCV) && (VISP_HAVE_OPENCV_VERSION >= 0x020100))
= std::pair<double, double>(0.002, 0.3);
= useScanline ? std::pair<double, double>(0.002, 1.8) : std::pair<double, double>(0.002, 0.7);
#endif
#else
= useScanline ? std::pair<double, double>(0.007, 2.3) : std::pair<double, double>(0.007, 2.1);
#if defined(VISP_HAVE_MODULE_KLT) && (defined(VISP_HAVE_OPENCV) && (VISP_HAVE_OPENCV_VERSION >= 0x020100))
= useScanline ? std::pair<double, double>(0.006, 1.7) : std::pair<double, double>(0.005, 1.4);
= useScanline ? std::pair<double, double>(0.004, 1.2) : std::pair<double, double>(0.004, 1.2);
#endif
= useScanline ? std::pair<double, double>(0.002, 0.7) : std::pair<double, double>(0.001, 0.4);
#if defined(VISP_HAVE_MODULE_KLT) && (defined(VISP_HAVE_OPENCV) && (VISP_HAVE_OPENCV_VERSION >= 0x020100))
= std::pair<double, double>(0.002, 0.3);
= useScanline ? std::pair<double, double>(0.001, 0.5) : std::pair<double, double>(0.001, 0.4);
#endif
#endif
vpImage<Type> I, I_depth;
vpImage<uint16_t> I_depth_raw;
std::vector<vpColVector> pointcloud;
int cpt_frame = 1;
if (!read_data(input_directory, cpt_frame, cam_depth, I, I_depth_raw, pointcloud, cMo_truth)) {
std::cerr << "Cannot read first frame!" << std::endl;
return EXIT_FAILURE;
}
const double roi_step = 7.0;
const double roi_step2 = 6.0;
if (use_mask) {
mask = false;
for (unsigned int i = (unsigned int) (I.getRows()/roi_step); i < (unsigned int) (I.getRows()*roi_step2/roi_step); i++) {
for (unsigned int j = (unsigned int) (I.getCols()/roi_step); j < (unsigned int) (I.getCols()*roi_step2/roi_step); j++) {
mask[i][j] = true;
}
}
tracker.setMask(mask);
}
vpImageConvert::createDepthHistogram(I_depth_raw, I_depth);
vpImage<vpRGBa> results(I.getHeight(), I.getWidth() + I_depth.getWidth());
vpImage<vpRGBa> resultsColor(I.getHeight(), I.getWidth());
vpImage<vpRGBa> resultsDepth(I_depth.getHeight(), I_depth.getWidth());
if (save) {
}
if (opt_display) {
#ifdef VISP_HAVE_DISPLAY
display1.init(I, 0, 0, "Image");
display2.init(I_depth, (int) I.getWidth(), 0, "Depth");
#endif
}
vpHomogeneousMatrix depth_M_color;
depth_M_color[0][3] = -0.05;
tracker.setCameraTransformationMatrix("Camera2", depth_M_color);
tracker.initFromPose(I, cMo_truth);
vpFont font(24);
bool click = false, quit = false, correct_accuracy = true;
std::vector<double> vec_err_t, vec_err_tu;
std::vector<double> time_vec;
while (read_data(input_directory, cpt_frame, cam_depth, I, I_depth_raw, pointcloud, cMo_truth) && !quit
&& (opt_lastFrame > 0 ? (int)cpt_frame <= opt_lastFrame : true)) {
vpImageConvert::createDepthHistogram(I_depth_raw, I_depth);
if (opt_display) {
} else if (save) {
convert(I, resultsColor);
convert(I_depth, resultsDepth);
}
double t = vpTime::measureTimeMs();
std::map<std::string, const vpImage<Type> *> mapOfImages;
mapOfImages["Camera1"] = &I;
std::map<std::string, const std::vector<vpColVector> *> mapOfPointclouds;
mapOfPointclouds["Camera2"] = &pointcloud;
std::map<std::string, unsigned int> mapOfWidths, mapOfHeights;
if (!use_depth) {
mapOfWidths["Camera2"] = 0;
mapOfHeights["Camera2"] = 0;
} else {
mapOfWidths["Camera2"] = I_depth.getWidth();
mapOfHeights["Camera2"] = I_depth.getHeight();
}
tracker.track(mapOfImages, mapOfPointclouds, mapOfWidths, mapOfHeights);
vpHomogeneousMatrix cMo = tracker.getPose();
time_vec.push_back(t);
if (opt_display) {
tracker.display(I, I_depth, cMo, depth_M_color*cMo, cam_color, cam_depth, vpColor::red, 3);
vpDisplay::displayFrame(I, cMo, cam_depth, 0.05, vpColor::none, 3);
vpDisplay::displayFrame(I_depth, depth_M_color*cMo, cam_depth, 0.05, vpColor::none, 3);
std::stringstream ss;
ss << "Frame: " << cpt_frame;
vpDisplay::displayText(I_depth, 20, 20, ss.str(), vpColor::red);
ss.str("");
ss << "Nb features: " << tracker.getError().getRows();
vpDisplay::displayText(I_depth, 40, 20, ss.str(), vpColor::red);
} else if (save) {
std::map<std::string, std::vector<std::vector<double> > > mapOfModels;
std::map<std::string, unsigned int> mapOfW;
mapOfW["Camera1"] = I.getWidth();
mapOfW["Camera2"] = I.getHeight();
std::map<std::string, unsigned int> mapOfH;
mapOfH["Camera1"] = I_depth.getWidth();
mapOfH["Camera2"] = I_depth.getHeight();
std::map<std::string, vpHomogeneousMatrix> mapOfcMos;
mapOfcMos["Camera1"] = cMo;
mapOfcMos["Camera2"] = depth_M_color*cMo;
std::map<std::string, vpCameraParameters> mapOfCams;
mapOfCams["Camera1"] = cam_color;
mapOfCams["Camera2"] = cam_depth;
tracker.getModelForDisplay(mapOfModels, mapOfW, mapOfH, mapOfcMos, mapOfCams);
for (std::map<std::string, std::vector<std::vector<double> > >::const_iterator it = mapOfModels.begin();
it != mapOfModels.end(); ++it) {
for (size_t i = 0; i < it->second.size(); i++) {
// test if it->second[i][0] = 0
if (std::fabs(it->second[i][0]) <= std::numeric_limits<double>::epsilon()) {
vpImageDraw::drawLine(it->first == "Camera1" ? resultsColor : resultsDepth, vpImagePoint(it->second[i][1], it->second[i][2]),
vpImagePoint(it->second[i][3], it->second[i][4]), vpColor::red, 3);
}
}
}
std::map<std::string, std::vector<std::vector<double> > > mapOfFeatures;
tracker.getFeaturesForDisplay(mapOfFeatures);
for (std::map<std::string, std::vector<std::vector<double> > >::const_iterator it = mapOfFeatures.begin();
it != mapOfFeatures.end(); ++it) {
for (size_t i = 0; i < it->second.size(); i++) {
if (std::fabs(it->second[i][0]) <= std::numeric_limits<double>::epsilon()) { // test it->second[i][0] = 0 for ME
if (std::fabs(it->second[i][3]) <= std::numeric_limits<double>::epsilon()) { // test it->second[i][3] = 0
color = vpColor::green;
} else if (std::fabs(it->second[i][3] - 1) <= std::numeric_limits<double>::epsilon()) { // test it->second[i][3] = 1
color = vpColor::blue;
} else if (std::fabs(it->second[i][3] - 2) <= std::numeric_limits<double>::epsilon()) { // test it->second[i][3] = 2
color = vpColor::purple;
} else if (std::fabs(it->second[i][3] - 3) <= std::numeric_limits<double>::epsilon()) { // test it->second[i][3] = 3
color = vpColor::red;
} else if (std::fabs(it->second[i][3] - 4) <= std::numeric_limits<double>::epsilon()) { // test it->second[i][3] = 4
color = vpColor::cyan;
}
vpImageDraw::drawCross(it->first == "Camera1" ? resultsColor : resultsDepth, vpImagePoint(it->second[i][1], it->second[i][2]),
3, color, 1);
} else if (std::fabs(it->second[i][0] - 1) <= std::numeric_limits<double>::epsilon()) { // test it->second[i][0] = 1 for KLT
vpImageDraw::drawCross(it->first == "Camera1" ? resultsColor : resultsDepth, vpImagePoint(it->second[i][1], it->second[i][2]),
10, vpColor::red, 1);
}
}
}
//Computation time
std::ostringstream oss;
oss << "Tracking time: " << t << " ms";
font.drawText(resultsColor, oss.str(), vpImagePoint(20,20), vpColor::red);
}
vpPoseVector pose_est(cMo);
vpPoseVector pose_truth(cMo_truth);
vpColVector t_est(3), t_truth(3);
vpColVector tu_est(3), tu_truth(3);
for (unsigned int i = 0; i < 3; i++) {
t_est[i] = pose_est[i];
t_truth[i] = pose_truth[i];
tu_est[i] = pose_est[i+3];
tu_truth[i] = pose_truth[i+3];
}
vpColVector t_err = t_truth-t_est, tu_err = tu_truth-tu_est;
const double t_thresh = map_thresh[!use_depth ? trackerType_image : trackerType_image | vpMbGenericTracker::DEPTH_DENSE_TRACKER].first;
const double tu_thresh = map_thresh[!use_depth ? trackerType_image : trackerType_image | vpMbGenericTracker::DEPTH_DENSE_TRACKER].second;
double t_err2 = sqrt(t_err.sumSquare()), tu_err2 = vpMath::deg(sqrt(tu_err.sumSquare()));
vec_err_t.push_back( t_err2 );
vec_err_tu.push_back( tu_err2 );
if ( !use_mask && (t_err2 > t_thresh || tu_err2 > tu_thresh) ) { //no accuracy test with mask
std::cerr << "Pose estimated exceeds the threshold (t_thresh = " << t_thresh << " ; tu_thresh = " << tu_thresh << ")!" << std::endl;
std::cout << "t_err: " << t_err2 << " ; tu_err: " << tu_err2 << std::endl;
correct_accuracy = false;
}
if (opt_display) {
if (use_mask) {
vpRect roi(vpImagePoint(I.getRows()/roi_step, I.getCols()/roi_step),
vpImagePoint(I.getRows()*roi_step2/roi_step, I.getCols()*roi_step2/roi_step));
}
vpDisplay::flush(I_depth);
} else if (save) {
char buffer[256];
std::ostringstream oss;
oss << "results/image_%04d.png";
sprintf(buffer, oss.str().c_str(), cpt_frame);
results.insert(resultsColor, vpImagePoint());
results.insert(resultsDepth, vpImagePoint(0, resultsColor.getWidth()));
vpImageIo::write(results, buffer);
}
if (opt_display && opt_click_allowed) {
if (vpDisplay::getClick(I, button, click)) {
switch (button) {
quit = !click;
break;
click = !click;
break;
default:
break;
}
}
}
cpt_frame++;
}
if (!time_vec.empty())
std::cout << "Computation time, Mean: " << vpMath::getMean(time_vec) << " ms ; Median: " << vpMath::getMedian(time_vec)
<< " ms ; Std: " << vpMath::getStdev(time_vec) << " ms" << std::endl;
if (!vec_err_t.empty())
std::cout << "Max translation error: " << *std::max_element(vec_err_t.begin(), vec_err_t.end()) << std::endl;
if (!vec_err_tu.empty())
std::cout << "Max thetau error: " << *std::max_element(vec_err_tu.begin(), vec_err_tu.end()) << std::endl;
return correct_accuracy ? EXIT_SUCCESS : EXIT_FAILURE;
}
}
int main(int argc, const char *argv[])
{
try {
std::string env_ipath;
std::string opt_ipath = "";
bool opt_click_allowed = true;
bool opt_display = true;
bool opt_save = false;
bool useScanline = false;
int trackerType_image = vpMbGenericTracker::EDGE_TRACKER;
#if defined(__mips__) || defined(__mips) || defined(mips) || defined(__MIPS__)
// To avoid Debian test timeout
int opt_lastFrame = 5;
#else
int opt_lastFrame = -1;
#endif
bool use_depth = false;
bool use_mask = false;
bool use_color_image = false;
// Get the visp-images-data package path or VISP_INPUT_IMAGE_PATH
// environment variable value
// Read the command line options
if (!getOptions(argc, argv, opt_ipath, opt_click_allowed, opt_display, opt_save,
useScanline, trackerType_image, opt_lastFrame, use_depth,
use_mask, use_color_image)) {
return EXIT_FAILURE;
}
std::cout << "trackerType_image: " << trackerType_image << std::endl;
std::cout << "useScanline: " << useScanline << std::endl;
std::cout << "use_depth: " << use_depth << std::endl;
std::cout << "use_mask: " << use_mask << std::endl;
std::cout << "use_color_image: " << use_color_image << std::endl;
#ifdef VISP_HAVE_COIN3D
std::cout << "COIN3D available." << std::endl;
#endif
#if !defined(VISP_HAVE_MODULE_KLT) || (!defined(VISP_HAVE_OPENCV) || (VISP_HAVE_OPENCV_VERSION < 0x020100))
if (trackerType_image & 2) {
std::cout << "KLT features cannot be used: ViSP is not built with "
"KLT module or OpenCV is not available.\nTest is not run."
<< std::endl;
return EXIT_SUCCESS;
}
#endif
// Test if an input path is set
if (opt_ipath.empty() && env_ipath.empty()) {
usage(argv[0], NULL);
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Use -i <visp image path> option or set VISP_INPUT_IMAGE_PATH " << std::endl
<< " environment variable to specify the location of the " << std::endl
<< " image path where test images are located." << std::endl
<< std::endl;
return EXIT_FAILURE;
}
std::string input_directory = vpIoTools::createFilePath(!opt_ipath.empty() ? opt_ipath : env_ipath, "mbt-depth/Castle-simu");
if (!vpIoTools::checkDirectory(input_directory)) {
std::cerr << "ViSP-images does not contain the folder: " << input_directory << "!" << std::endl;
return EXIT_SUCCESS;
}
if (use_color_image) {
return run<vpRGBa>(input_directory, opt_click_allowed, opt_display, useScanline,
trackerType_image, opt_lastFrame, use_depth, use_mask, opt_save);
} else {
return run<unsigned char>(input_directory, opt_click_allowed, opt_display, useScanline,
trackerType_image, opt_lastFrame, use_depth, use_mask, opt_save);
}
} catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#elif !(defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
int main()
{
std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
return EXIT_SUCCESS;
}
#else
int main() {
std::cout << "Enable MBT module (VISP_HAVE_MODULE_MBT) to launch this test." << std::endl;
return EXIT_SUCCESS;
}
#endif