Visual Servoing Platform  version 3.5.0 under development (2022-02-15)
Bibliography
[1]

S. Baker and I. Matthews. Lucas-kanade 20 years on: A unifying framework. Int. Journal of Computer Vision, 56(3):221–255, 2004.

[2]

M. Bakthavatchalam, F. Chaumette, and E. Marchand. Photometric moments: New promising candidates for visual servoing. In IEEE Int. Conf. on Robotics and Automation, ICRA'13, pages 5521–5526, Karlsruhe, Germany, May 2013.

[3]

F. Chaumette and S. Hutchinson. Visual servo control, part i: Basic approaches. IEEE Robotics and Automation Magazine, 13(4):82–90, December 2006.

[4]

F. Chaumette and S. Hutchinson. Visual servo control, part ii: Advanced approaches. IEEE Robotics and Automation Magazine, 14(1):109–118, March 2007.

[5]

F. Chaumette and E. Marchand. A redundancy-based iterative approach for avoiding joint limits: Application to visual servoing. IEEE Trans. on Robotics and Automation, 17(5):719–730, October 2001.

[6]

F. Chaumette. Image moments: a general and useful set of features for visual servoing. IEEE Trans. on Robotics, 20(4):713–723, August 2004.

[7]

C. Collewet, E. Marchand, and F. Chaumette. Visual servoing set free from image processing. In IEEE Int. Conf. on Robotics and Automation, ICRA'08, Pasadena, United States, 2008. IEEE.

[8]

A.I. Comport, E. Marchand, M. Pressigout, and F. Chaumette. Real-time markerless tracking for augmented reality: the virtual visual servoing framework. IEEE Trans. on Visualization and Computer Graphics, 12(4):615–628, July 2006.

[9]

A.I. Comport. Robust real-time 3D tracking of rigid and articulated objects for augmented reality and robotics. PhD thesis, Université de Rennes 1, Mention traitement du signal et télécommunications, 2005.

[10]

P. Corke, F. Spindler, and F. Chaumette. Combining cartesian and cylindrical coordinates in ibvs. pages 5962–5967, October 2009.

[11]

A. Dame and E. Marchand. Accurate real-time tracking using mutual information. In IEEE Int. Symp. on Mixed and Augmented Reality, ISMAR'10, pages 47–56, Seoul, Korea, October 2010.

[12]

A. Dame and E. Marchand. Video mosaicing using a mutual information-based motion estimation process. In IEEE Int. Conf. on Image Processing, ICIP'11, pages 1525–1528, Brussels, Belgium, September 2011.

[13]

A. Dame and E. Marchand. Second order optimization of mutual information for real-time image registration. IEEE Trans. on Image Processing, 21(9):4190–4203, September 2012.

[14]

D. Dementhon and L. Davis. Model-based object pose in 25 lines of codes. Int. J. of Computer Vision, 15(1-2):123–141, 1995.

[15]

N. Fischler and R.C. Bolles. Random sample consensus: A paradigm for model fitting with application to image analysis and automated cartography. Communication of the ACM, 24(6):381–395, June 1981.

[16]

James E. Gentle. Random number generation and monte carlo methods. 2004.

[17]

C. A. Glasbey. An analysis of histogram-based thresholding algorithms. CVGIP: Graph. Models Image Process., 55(6):532–537, November 1993.

[18]

Jonathon S. Hare, Sina Samangooei, and David P. Dupplaw. Openimaj and imageterrier: Java libraries and tools for scalable multimedia analysis and indexing of images. In Proceedings of the 19th ACM international conference on Multimedia, MM '11, pages 691–694, New York, NY, USA, 2011. ACM.

[19]

R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2001.

[20]

M. Irani and P. Anandan. Robust multi-sensor image alignment. In IEEE Int. Conf. on Computer Vision, ICCV'98, pages 959–966, Bombay, India, 1998.

[21]

Liang kai Huang, Mao j Iun, and J. Wangt. Image thresholding by minimizing the measure of fuzziness. In Pattern Recognition, 1995,28(1):41-51. 113 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008.

[22]

Juho Kannala and Sami Brandt. A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE transactions on pattern analysis and machine intelligence, 28:1335–40, 09 2006.

[23]

O. Kermorgant and F. Chaumette. Dealing with constraints in sensor-based robot control. IEEE Trans. on Robotics, 30(1):244–257, February 2014.

[24]

Maximilian Krogius, Acshi Haggenmiller, and Edwin Olson. Flexible layouts for fiducial tags (under review). Under Review.

[25]

D.G. Lowe. Robust model-based motion tracking trough the integration of search and estimation. Int. Journal of Computer Vision, 8(2):113–122, 1992.

[26]

E. Malis and F. Chaumette. 2 1/2 d visual servoing with respect to unknown objects through a new estimation scheme of camera displacement. Int. Journal of Computer Vision, 37(1):79–97, June 2000.

[27]

E. Malis. Contributions à la modélisation et à la commande en asservissement visuel. PhD thesis, Université de Rennes 1, Mention traitement du signal et télécommunications, November 1998.

[28]

Henrique S. Malvar, Li wei He, and Ross Cutler. High-quality linear interpolation for demosaicing of bayer-patterned color images. 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, 3:iii–485, 2004.

[29]

N. Mansard and F. Chaumette. Task sequencing for high level sensor-based control. IEEE Trans. on Robotics, 23(1):60–72, February 2007.

[30]

E. Marchand and F. Chaumette. Virtual visual servoing: a framework for real-time augmented reality. 21(3):289–298, September 2002.

[31]

E. Marchand, F. Chaumette, and A. Rizzo. Using the task function approach to avoid robot joint limits and kinematic singularities in visual servoing. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS'96, volume 3, pages 1083–1090, Osaka, Japan, November 1996.

[32]

E. Marchand, F. Spindler, and F. Chaumette. Visp for visual servoing: a generic software platform with a wide class of robot control skills. IEEE Robotics and Automation Magazine, 12(4):40–52, December 2005.

[33]

E. Marchand, H. Uchiyama, and F. Spindler. Pose estimation for augmented reality: a hands-on survey. IEEE Trans. on Visualization and Computer Graphics, 2016.

[34]

M. Marey and F. Chaumette. A new large projection operator for the redundancy framework. In IEEE Int. Conf. on Robotics and Automation, ICRA'10, pages 3727–3732, Anchorage, Alaska, United States, 2010.

[35]

M. Marey and F. Chaumette. New strategies for avoiding robot joint limits: Application to visual servoing using a large projection operator. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS'10, pages 6222–6227, Taipei, Taiwan, Taiwan, 2010.

[36]

Edwin Olson. AprilTag: A robust and flexible visual fiducial system. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages 3400–3407. IEEE, May 2011.

[37]

Melissa E. O'Neill. Pcg: A family of simple fast space-efficient statistically good algorithms for random number generation. Technical Report HMC-CS-2014-0905, Harvey Mudd College, Claremont, CA, September 2014.

[38]

N. Otsu. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1):62–66, Jan 1979.

[39]

Muriel Pressigout and Eric Marchand. Real-time hybrid tracking using edge and texture information. The International Journal of Robotics Research, 26(7):689–713, 2007.

[40]

Judith M. S. Prewitt and Mortimer L. Mendelsohn. The analysis of cell images*. Annals of the New York Academy of Sciences, 128(3):1035–1053, 1966.

[41]

T.W. Ridler and S Calvard. Picture thresholding using an iterative selection method. 8:630–632, 08 1978.

[42]

Carsten Steger. On the calculation of moments of polygons. Technical report, Forschungsgruppe Bildverstehen (FG BV), Informatik IX, Technishe Universität München, August 1996.

[43]

Satoshi Suzuki and KeiichiA be. Topological structural analysis of digitized binary images by border following. 30:32–46, 03 1985.

[44]

O. Tahri and F. Chaumette. Point-based and region-based image moments for visual servoing of planar objects. IEEE Trans. on Robotics, 21(6):1116–1127, December 2005.

[45]

S. Trinh, F. Spindler, E. Marchand, and F. Chaumette. A modular framework for model-based visual tracking using edge, texture and depth features. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS'18, Madrid, Spain, October 2018.

[46]

R. Tsai and R. Lenz. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans. on Robotics and Automation, 5(3):345–358, June 1989.

[47]

John Wang and Edwin Olson. AprilTag 2: Efficient and robust fiducial detection. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2016.

[48]

G W Zack, W E Rogers, and S A Latt. Automatic measurement of sister chromatid exchange frequency. Journal of Histochemistry & Cytochemistry, 25(7):741–753, 1977. PMID: 70454.