Visual Servoing Platform  version 3.4.0
testGaussianFilter.cpp

Test Gaussian filter.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2019 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Test Gaussian filter.
*
*****************************************************************************/
#include <visp3/core/vpConfig.h>
#if defined(VISP_HAVE_CATCH2)
#define CATCH_CONFIG_RUNNER
#include <catch.hpp>
#include <visp3/core/vpGaussianFilter.h>
#include <visp3/core/vpImageTools.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/io/vpImageIo.h>
TEST_CASE("Test vpGaussianFilter (unsigned char)") {
"Klimt/Klimt.pgm");
vpImageIo::read(I, filepath);
std::vector<float> sigmas = {0.5f, 2.0f, 5.0f, 7.0f};
for (auto sigma : sigmas) {
vpGaussianFilter gaussianFilter(I.getWidth(), I.getHeight(), sigma);
gaussianFilter.apply(I, I_blurred);
vpImage<unsigned char> I_blurred_ref;
const std::string filepath_ref = vpIoTools::createFilePath(vpIoTools::getViSPImagesDataPath(),
"Gaussian-filter/Klimt_gray_Gaussian_blur_sigma=%.1f.png");
char buffer[256];
sprintf(buffer, filepath_ref.c_str(), sigma);
const std::string filename = buffer;
vpImageIo::read(I_blurred_ref, filename);
vpImageTools::imageDifferenceAbsolute(I_blurred, I_blurred_ref, I_diff);
vpImage<double> I_diff_dbl;
vpImageConvert::convert(I_diff, I_diff_dbl);
std::cout << "sigma: " << sigma << " ; I_diff_dbl: " << I_diff_dbl.getMeanValue() << std::endl;
const double threshold = 1.5;
CHECK(I_diff_dbl.getMeanValue() < threshold);
}
}
TEST_CASE("Test vpGaussianFilter (vpRGBa)") {
"Klimt/Klimt.ppm");
vpImageIo::read(I, filepath);
std::vector<float> sigmas = {0.5f, 2.0f, 5.0f, 7.0f};
for (auto sigma : sigmas) {
vpGaussianFilter gaussianFilter(I.getWidth(), I.getHeight(), sigma);
vpImage<vpRGBa> I_blurred;
gaussianFilter.apply(I, I_blurred);
vpImage<vpRGBa> I_blurred_ref;
const std::string filepath_ref = vpIoTools::createFilePath(vpIoTools::getViSPImagesDataPath(),
"Gaussian-filter/Klimt_RGB_Gaussian_blur_sigma=%.1f.png");
char buffer[256];
sprintf(buffer, filepath_ref.c_str(), sigma);
const std::string filename = buffer;
vpImageIo::read(I_blurred_ref, filename);
vpImageTools::imageDifferenceAbsolute(I_blurred, I_blurred_ref, I_diff);
vpImage<unsigned char> I_diff_R, I_diff_G, I_diff_B;
vpImageConvert::split(I_diff, &I_diff_R, &I_diff_G, &I_diff_B);
vpImage<double> I_diff_R_dbl, I_diff_G_dbl, I_diff_B_dbl;
vpImageConvert::convert(I_diff_R, I_diff_R_dbl);
vpImageConvert::convert(I_diff_G, I_diff_G_dbl);
vpImageConvert::convert(I_diff_B, I_diff_B_dbl);
std::cout << "sigma: " << sigma << " ; I_diff_R_dbl: " << I_diff_R_dbl.getMeanValue() << " ; I_diff_G_dbl: "
<< I_diff_G_dbl.getMeanValue() << " ; I_diff_B_dbl: " << I_diff_B_dbl.getMeanValue() << std::endl;
const double threshold = 1.5;
CHECK(I_diff_R_dbl.getMeanValue() < threshold);
CHECK(I_diff_G_dbl.getMeanValue() < threshold);
CHECK(I_diff_B_dbl.getMeanValue() < threshold);
}
}
TEST_CASE("Test vpGaussianFilter (vpRGBa + deinterleave)") {
"Klimt/Klimt.ppm");
vpImageIo::read(I, filepath);
std::vector<float> sigmas = {0.5f, 2.0f, 5.0f, 7.0f};
for (auto sigma : sigmas) {
const bool deinterleave = true;
vpGaussianFilter gaussianFilter(I.getWidth(), I.getHeight(), sigma, deinterleave);
vpImage<vpRGBa> I_blurred;
gaussianFilter.apply(I, I_blurred);
vpImage<vpRGBa> I_blurred_ref;
const std::string filepath_ref = vpIoTools::createFilePath(vpIoTools::getViSPImagesDataPath(),
"Gaussian-filter/Klimt_RGB_Gaussian_blur_sigma=%.1f.png");
char buffer[256];
sprintf(buffer, filepath_ref.c_str(), sigma);
const std::string filename = buffer;
vpImageIo::read(I_blurred_ref, filename);
vpImageTools::imageDifferenceAbsolute(I_blurred, I_blurred_ref, I_diff);
vpImage<unsigned char> I_diff_R, I_diff_G, I_diff_B;
vpImageConvert::split(I_diff, &I_diff_R, &I_diff_G, &I_diff_B);
vpImage<double> I_diff_R_dbl, I_diff_G_dbl, I_diff_B_dbl;
vpImageConvert::convert(I_diff_R, I_diff_R_dbl);
vpImageConvert::convert(I_diff_G, I_diff_G_dbl);
vpImageConvert::convert(I_diff_B, I_diff_B_dbl);
std::cout << "sigma: " << sigma << " ; I_diff_R_dbl: " << I_diff_R_dbl.getMeanValue() << " ; I_diff_G_dbl: "
<< I_diff_G_dbl.getMeanValue() << " ; I_diff_B_dbl: " << I_diff_B_dbl.getMeanValue() << std::endl;
const double threshold = 1.5;
CHECK(I_diff_R_dbl.getMeanValue() < threshold);
CHECK(I_diff_G_dbl.getMeanValue() < threshold);
CHECK(I_diff_B_dbl.getMeanValue() < threshold);
}
}
int main(int argc, char *argv[])
{
Catch::Session session; // There must be exactly one instance
// Let Catch (using Clara) parse the command line
session.applyCommandLine(argc, argv);
int numFailed = session.run();
// numFailed is clamped to 255 as some unices only use the lower 8 bits.
// This clamping has already been applied, so just return it here
// You can also do any post run clean-up here
return numFailed;
}
#else
int main()
{
return 0;
}
#endif