Visual Servoing Platform  version 3.4.0
simulateFourPoints2DPolarCamVelocity.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a visual servoing with visualization.
33  *
34  * Authors:
35  * Eric Marchand
36  * Fabien Spindler
37  *
38  *****************************************************************************/
39 
50 #include <visp3/core/vpConfig.h>
51 #include <visp3/core/vpDebug.h>
52 
53 #ifdef VISP_HAVE_COIN3D_AND_GUI
54 
55 #include <visp3/ar/vpSimulator.h>
56 #include <visp3/core/vpCameraParameters.h>
57 #include <visp3/core/vpHomogeneousMatrix.h>
58 #include <visp3/core/vpImage.h>
59 #include <visp3/core/vpIoTools.h>
60 #include <visp3/core/vpMath.h>
61 #include <visp3/core/vpTime.h>
62 #include <visp3/io/vpParseArgv.h>
63 #include <visp3/robot/vpSimulatorCamera.h>
64 #include <visp3/visual_features/vpFeatureBuilder.h>
65 #include <visp3/visual_features/vpFeaturePointPolar.h>
66 #include <visp3/vs/vpServo.h>
67 
68 #define GETOPTARGS "di:h"
69 #define SAVE 0
70 
80 void usage(const char *name, const char *badparam, std::string ipath)
81 {
82  fprintf(stdout, "\n\
83 Simulation Servo 4points.\n\
84  \n\
85 SYNOPSIS\n\
86  %s [-i <input image path>] [-d] [-h]\n", name);
87 
88  fprintf(stdout, "\n\
89 OPTIONS: Default\n\
90  -i <input image path> %s\n\
91  Set image input path.\n\
92  From this path read \"iv/4points.iv\"\n\
93  cad model.\n\
94  Setting the VISP_INPUT_IMAGE_PATH environment\n\
95  variable produces the same behaviour than using\n\
96  this option.\n\
97  \n\
98  -d \n\
99  Disable the image display. This can be useful \n\
100  for automatic tests using crontab under Unix or \n\
101  using the task manager under Windows.\n\
102  \n\
103  -h\n\
104  Print the help.\n\n", ipath.c_str());
105 
106  if (badparam)
107  fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
108 }
109 
125 bool getOptions(int argc, const char **argv, std::string &ipath, bool &display)
126 {
127  const char *optarg;
128  int c;
129  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg)) > 1) {
130 
131  switch (c) {
132  case 'i':
133  ipath = optarg;
134  break;
135  case 'd':
136  display = false;
137  break;
138  case 'h':
139  usage(argv[0], NULL, ipath);
140  return false;
141  break;
142 
143  default:
144  usage(argv[0], optarg, ipath);
145  return false;
146  break;
147  }
148  }
149 
150  if ((c == 1) || (c == -1)) {
151  // standalone param or error
152  usage(argv[0], NULL, ipath);
153  std::cerr << "ERROR: " << std::endl;
154  std::cerr << " Bad argument " << optarg << std::endl << std::endl;
155  return false;
156  }
157 
158  return true;
159 }
160 
161 static void *mainLoop(void *_simu)
162 {
163  vpSimulator *simu = static_cast<vpSimulator *>(_simu);
164  simu->initMainApplication();
165 
166  vpServo task;
167  vpSimulatorCamera robot;
168 
169  float sampling_time = 0.040f; // Sampling period in second
170  robot.setSamplingTime(sampling_time);
171  robot.setMaxTranslationVelocity(4.);
172 
173  // Sets the initial camera location
174  vpPoseVector vcMo;
175 
176  vcMo[0] = 0.;
177  vcMo[1] = 0.;
178  vcMo[2] = 3;
179  vcMo[3] = 0;
180  vcMo[4] = vpMath::rad(0);
181  vcMo[5] = vpMath::rad(90);
182 
183  vpHomogeneousMatrix cMo(vcMo);
184  vpHomogeneousMatrix wMo; // Set to identity
185  vpHomogeneousMatrix wMc; // Camera location in world frame
186  wMc = wMo * cMo.inverse();
187  robot.setPosition(wMc);
188  simu->setCameraPosition(cMo);
189 
190  simu->getCameraPosition(cMo);
191  wMc = wMo * cMo.inverse();
192  robot.setPosition(wMc);
193 
194  vpCameraParameters cam;
195 
196  // Sets the point coordinates in the world frame
197  vpPoint point[4];
198  point[0].setWorldCoordinates(-0.1, -0.1, 0);
199  point[1].setWorldCoordinates(0.1, -0.1, 0);
200  point[2].setWorldCoordinates(0.1, 0.1, 0);
201  point[3].setWorldCoordinates(-0.1, 0.1, 0);
202 
203  // Project : computes the point coordinates in the camera frame and its 2D
204  // coordinates
205  for (int i = 0; i < 4; i++) {
206  point[i].changeFrame(cMo); // Compute point coordinates in the camera frame
207  point[i].project(); // Compute desired point doordinates in the camera frame
208  }
209 
210  // Sets the desired position of the point
211  vpFeaturePointPolar p[4];
212  for (int i = 0; i < 4; i++)
214  point[i]); // retrieve x,y and Z of the
215  // vpPoint structure to build the
216  // polar coordinates
217 
218  std::cout << "s: \n";
219  for (int i = 0; i < 4; i++) {
220  printf("[%d] rho %f theta %f Z %f\n", i, p[i].get_rho(), p[i].get_theta(), p[i].get_Z());
221  }
222 
223  // Sets the desired position of the point
224  vcMo[0] = 0;
225  vcMo[1] = 0;
226  vcMo[2] = 1;
227  vcMo[3] = vpMath::rad(0);
228  vcMo[4] = vpMath::rad(0);
229  vcMo[5] = vpMath::rad(0);
230 
231  vpHomogeneousMatrix cMod(vcMo);
232 
233  vpFeaturePointPolar pd[4];
234  vpPoint pointd[4]; // Desired position of the points
235  pointd[0].setWorldCoordinates(-0.1, -0.1, 0);
236  pointd[1].setWorldCoordinates(0.1, -0.1, 0);
237  pointd[2].setWorldCoordinates(0.1, 0.1, 0);
238  pointd[3].setWorldCoordinates(-0.1, 0.1, 0);
239  for (int i = 0; i < 4; i++) {
240  pointd[i].changeFrame(cMod); // Compute desired point doordinates in the camera frame
241  pointd[i].project(); // Compute desired point doordinates in the camera frame
242 
243  vpFeatureBuilder::create(pd[i], pointd[i]); // retrieve x,y and Z of the
244  // vpPoint structure to build
245  // the polar coordinates
246  }
247  std::cout << "s*: \n";
248  for (int i = 0; i < 4; i++) {
249  printf("[%d] rho %f theta %f Z %f\n", i, pd[i].get_rho(), pd[i].get_theta(), pd[i].get_Z());
250  }
251 
252  // Define the task
253  // We want an eye-in-hand control law
254  // Articular velocity are computed
257 
258  // Set the position of the end-effector frame in the camera frame as identity
260  vpVelocityTwistMatrix cVe(cMe);
261  task.set_cVe(cVe);
262 
263  // Set the Jacobian (expressed in the end-effector frame)
264  vpMatrix eJe;
265  robot.get_eJe(eJe);
266  task.set_eJe(eJe);
267 
268  // We want to see a point on a point
269  for (int i = 0; i < 4; i++)
270  task.addFeature(p[i], pd[i]);
271 
272  // Set the gain
273  task.setLambda(1.0);
274 
275  // Display task information
276  task.print();
277 
278  vpTime::wait(1000); // Sleep 1s
279 
280  unsigned int iter = 0;
281  // Visual servo loop
282  while (iter++ < 200) {
283  double t = vpTime::measureTimeMs();
284 
285  robot.get_eJe(eJe);
286  task.set_eJe(eJe);
287 
288  wMc = robot.getPosition();
289  cMo = wMc.inverse() * wMo;
290  for (int i = 0; i < 4; i++) {
291  point[i].track(cMo);
292  vpFeatureBuilder::create(p[i], point[i]);
293  }
294 
295  vpColVector v = task.computeControlLaw();
297 
298  simu->setCameraPosition(cMo);
299 
300  if (SAVE == 1) {
301  char name[FILENAME_MAX];
302  sprintf(name, "/tmp/image.%04u.external.png", iter);
303  std::cout << name << std::endl;
304  simu->write(name);
305  sprintf(name, "/tmp/image.%04u.internal.png", iter);
306  simu->write(name);
307  }
308 
309  vpTime::wait(t, sampling_time * 1000); // Wait 40 ms
310  }
311  // Display task information
312  task.print();
313 
314  std::cout << "cMo:\n" << cMo << std::endl;
315  vpPoseVector pose(cMo);
316  std::cout << "final pose:\n" << pose.t() << std::endl;
317 
318  simu->closeMainApplication();
319 
320  void *a = NULL;
321  return a;
322 }
323 
324 int main(int argc, const char **argv)
325 {
326  try {
327  std::string env_ipath;
328  std::string opt_ipath;
329  std::string ipath;
330  std::string filename;
331  bool opt_display = true;
332 
333  // Get the visp-images-data package path or VISP_INPUT_IMAGE_PATH
334  // environment variable value
335  env_ipath = vpIoTools::getViSPImagesDataPath();
336 
337  // Set the default input path
338  if (!env_ipath.empty())
339  ipath = env_ipath;
340 
341  // Read the command line options
342  if (getOptions(argc, argv, opt_ipath, opt_display) == false) {
343  exit(-1);
344  }
345 
346  // Get the option values
347  if (!opt_ipath.empty())
348  ipath = opt_ipath;
349 
350  // Compare ipath and env_ipath. If they differ, we take into account
351  // the input path comming from the command line option
352  if (!opt_ipath.empty() && !env_ipath.empty()) {
353  if (ipath != env_ipath) {
354  std::cout << std::endl << "WARNING: " << std::endl;
355  std::cout << " Since -i <visp image path=" << ipath << "> "
356  << " is different from VISP_IMAGE_PATH=" << env_ipath << std::endl
357  << " we skip the environment variable." << std::endl;
358  }
359  }
360 
361  // Test if an input path is set
362  if (opt_ipath.empty() && env_ipath.empty()) {
363  usage(argv[0], NULL, ipath);
364  std::cerr << std::endl << "ERROR:" << std::endl;
365  std::cerr << " Use -i <visp image path> option or set VISP_INPUT_IMAGE_PATH " << std::endl
366  << " environment variable to specify the location of the " << std::endl
367  << " image path where test images are located." << std::endl
368  << std::endl;
369  exit(-1);
370  }
371 
372  vpCameraParameters cam;
374  fMo[2][3] = 0;
375 
376  if (opt_display) {
377  vpSimulator simu;
378  simu.initInternalViewer(300, 300);
379  simu.initExternalViewer(300, 300);
380 
381  vpTime::wait(1000);
382  simu.setZoomFactor(1.0f);
383 
384  // Load the cad model
385  filename = vpIoTools::createFilePath(ipath, "iv/4points.iv");
386  simu.load(filename.c_str());
387 
388  simu.setInternalCameraParameters(cam);
389  simu.setExternalCameraParameters(cam);
390  simu.initApplication(&mainLoop);
391 
392  simu.mainLoop();
393  }
394  return EXIT_SUCCESS;
395  } catch (const vpException &e) {
396  std::cout << "Catch an exception: " << e << std::endl;
397  return EXIT_FAILURE;
398  }
399 }
400 
401 #else
402 int main()
403 {
404  std::cout << "You do not have Coin3D and SoQT or SoWin or SoXt functionalities enabled..." << std::endl;
405  std::cout << "Tip:" << std::endl;
406  std::cout << "- Install Coin3D and SoQT or SoWin or SoXt, configure ViSP again using cmake and build again this example" << std::endl;
407  return EXIT_SUCCESS;
408 }
409 #endif
void setPosition(const vpHomogeneousMatrix &wMc)
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:153
VISP_EXPORT int wait(double t0, double t)
Definition: vpTime.cpp:173
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:113
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
static std::string getViSPImagesDataPath()
Definition: vpIoTools.cpp:1202
void write(const char *fileName)
void setExternalCameraParameters(vpCameraParameters &cam)
set external camera parameters
void setCameraPosition(vpHomogeneousMatrix &cMf)
set the camera position (from an homogeneous matrix)
Implementation of an homogeneous matrix and operations on such kind of matrices.
Class that defines the simplest robot: a free flying camera.
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:490
Implementation of a simulator based on Coin3d (www.coin3d.org).
Definition: vpSimulator.h:99
void changeFrame(const vpHomogeneousMatrix &cMo, vpColVector &cP) const
Definition: vpPoint.cpp:239
void setZoomFactor(float zoom)
set the size of the camera/frame
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:506
void closeMainApplication()
error that can be emited by ViSP classes.
Definition: vpException.h:71
void track(const vpHomogeneousMatrix &cMo)
virtual void mainLoop()
activate the mainloop
Class that defines 2D image point visual feature with polar coordinates described in ...
VISP_EXPORT double measureTimeMs()
Definition: vpTime.cpp:126
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:81
virtual void setSamplingTime(const double &delta_t)
static std::string createFilePath(const std::string &parent, const std::string &child)
Definition: vpIoTools.cpp:1446
void initApplication(void *(*start_routine)(void *))
begin the main program
vpColVector computeControlLaw()
Definition: vpServo.cpp:929
void getCameraPosition(vpHomogeneousMatrix &_cMf)
get the camera position (from an homogeneous matrix)
Definition: vpSimulator.h:249
void setInternalCameraParameters(vpCameraParameters &cam)
set internal camera parameters
Generic class defining intrinsic camera parameters.
void setLambda(double c)
Definition: vpServo.h:404
virtual void initInternalViewer(unsigned int nlig, unsigned int ncol)
initialize the camera view
void load(const char *file_name)
load an iv file
vpHomogeneousMatrix getPosition() const
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:567
static double rad(double deg)
Definition: vpMath.h:110
void initMainApplication()
perform some initialization in the main program thread
Implementation of column vector and the associated operations.
Definition: vpColVector.h:130
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:448
Implementation of a pose vector and operations on poses.
Definition: vpPoseVector.h:151
vpHomogeneousMatrix inverse() const
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:306
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
void get_eJe(vpMatrix &eJe)
void initExternalViewer(unsigned int nlig, unsigned int ncol)
initialize the external view
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:218
void setMaxTranslationVelocity(double maxVt)
Definition: vpRobot.cpp:239