Visual Servoing Platform  version 3.4.0
servoViper850FourPoints2DArtVelocityLs_des.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * tests the control law
33  * eye-in-hand control
34  * velocity computed in the articular frame
35  *
36  * Authors:
37  * Fabien Spindler
38  *
39  *****************************************************************************/
51 #include <visp3/core/vpConfig.h>
52 #include <visp3/core/vpDebug.h> // Debug trace
53 
54 #include <fstream>
55 #include <iostream>
56 #include <sstream>
57 #include <stdio.h>
58 #include <stdlib.h>
59 #if (defined(VISP_HAVE_VIPER850) && defined(VISP_HAVE_DC1394))
60 
61 #include <visp3/blob/vpDot2.h>
62 #include <visp3/core/vpDisplay.h>
63 #include <visp3/core/vpHomogeneousMatrix.h>
64 #include <visp3/core/vpImage.h>
65 #include <visp3/core/vpIoTools.h>
66 #include <visp3/core/vpMath.h>
67 #include <visp3/core/vpPoint.h>
68 #include <visp3/gui/vpDisplayGTK.h>
69 #include <visp3/gui/vpDisplayOpenCV.h>
70 #include <visp3/gui/vpDisplayX.h>
71 #include <visp3/robot/vpRobotViper850.h>
72 #include <visp3/sensor/vp1394TwoGrabber.h>
73 #include <visp3/vision/vpPose.h>
74 #include <visp3/visual_features/vpFeatureBuilder.h>
75 #include <visp3/visual_features/vpFeaturePoint.h>
76 #include <visp3/vs/vpServo.h>
77 #include <visp3/vs/vpServoDisplay.h>
78 
79 int main()
80 {
81  // Log file creation in /tmp/$USERNAME/log.dat
82  // This file contains by line:
83  // - the 6 computed joint velocities (m/s, rad/s) to achieve the task
84  // - the 6 mesured joint velocities (m/s, rad/s)
85  // - the 6 mesured joint positions (m, rad)
86  // - the 8 values of s - s*
87  std::string username;
88  // Get the user login name
89  vpIoTools::getUserName(username);
90 
91  // Create a log filename to save velocities...
92  std::string logdirname;
93  logdirname = "/tmp/" + username;
94 
95  // Test if the output path exist. If no try to create it
96  if (vpIoTools::checkDirectory(logdirname) == false) {
97  try {
98  // Create the dirname
99  vpIoTools::makeDirectory(logdirname);
100  } catch (...) {
101  std::cerr << std::endl << "ERROR:" << std::endl;
102  std::cerr << " Cannot create " << logdirname << std::endl;
103  return (-1);
104  }
105  }
106  std::string logfilename;
107  logfilename = logdirname + "/log.dat";
108 
109  // Open the log file name
110  std::ofstream flog(logfilename.c_str());
111 
112  try {
113 // Define the square CAD model
114 // Square dimention
115 //#define L 0.075
116 #define L 0.05
117 // Distance between the camera and the square at the desired
118 // position after visual servoing convergence
119 #define D 0.5
120 
121  vpRobotViper850 robot;
122  // Load the end-effector to camera frame transformation obtained
123  // using a camera intrinsic model with distortion
126 
127  vpServo task;
128 
130  int i;
131 
132  bool reset = false;
133  vp1394TwoGrabber g(reset);
135  g.setFramerate(vp1394TwoGrabber::vpFRAMERATE_60);
136  g.open(I);
137 
138  g.acquire(I);
139 
140 #ifdef VISP_HAVE_X11
141  vpDisplayX display(I, 100, 100, "Current image");
142 #elif defined(VISP_HAVE_OPENCV)
143  vpDisplayOpenCV display(I, 100, 100, "Current image");
144 #elif defined(VISP_HAVE_GTK)
145  vpDisplayGTK display(I, 100, 100, "Current image");
146 #endif
147 
149  vpDisplay::flush(I);
150 
151  std::cout << std::endl;
152  std::cout << "-------------------------------------------------------" << std::endl;
153  std::cout << " Test program for vpServo " << std::endl;
154  std::cout << " Eye-in-hand task control, velocity computed in the joint space" << std::endl;
155  std::cout << " Use of the Afma6 robot " << std::endl;
156  std::cout << " task : servo 4 points on a square with dimention " << L << " meters" << std::endl;
157  std::cout << "-------------------------------------------------------" << std::endl;
158  std::cout << std::endl;
159 
160  vpDot dot[4];
161  vpImagePoint cog;
162 
163  std::cout << "Click on the 4 dots clockwise starting from upper/left dot..." << std::endl;
164 
165  for (i = 0; i < 4; i++) {
166  dot[i].setGraphics(true);
167  dot[i].initTracking(I);
168  cog = dot[i].getCog();
170  vpDisplay::flush(I);
171  }
172 
173  vpCameraParameters cam;
174 
175  // Update camera parameters
176  robot.getCameraParameters(cam, I);
177 
178  cam.printParameters();
179 
180  // Sets the current position of the visual feature
181  vpFeaturePoint p[4];
182  for (i = 0; i < 4; i++)
183  vpFeatureBuilder::create(p[i], cam, dot[i]); // retrieve x,y and Z of the vpPoint structure
184 
185  // sets the desired position of the visual feature
186  vpFeaturePoint pd[4];
187 
188  pd[0].buildFrom(-L, -L, D);
189  pd[1].buildFrom(L, -L, D);
190  pd[2].buildFrom(L, L, D);
191  pd[3].buildFrom(-L, L, D);
192 
193  // We want to see a point on a point
194  std::cout << std::endl;
195  for (i = 0; i < 4; i++)
196  task.addFeature(p[i], pd[i]);
197 
198  // Set the proportional gain
199  task.setLambda(0.4);
200 
201  // Display task information
202  task.print();
203 
204  // Define the task
205  // - we want an eye-in-hand control law
206  // - articular velocity are computed
209  task.print();
210 
212  robot.get_cVe(cVe);
213  task.set_cVe(cVe);
214  task.print();
215 
216  // Set the Jacobian (expressed in the end-effector frame)
217  vpMatrix eJe;
218  robot.get_eJe(eJe);
219  task.set_eJe(eJe);
220  task.print();
221 
222  // Initialise the velocity control of the robot
224 
225  std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
226  for (;;) {
227  // Acquire a new image from the camera
228  g.acquire(I);
229 
230  // Display this image
232 
233  try {
234  // For each point...
235  for (i = 0; i < 4; i++) {
236  // Achieve the tracking of the dot in the image
237  dot[i].track(I);
238  // Display a green cross at the center of gravity position in the
239  // image
240  cog = dot[i].getCog();
242  }
243  } catch (...) {
244  flog.close(); // Close the log file
245  vpTRACE("Error detected while tracking visual features");
246  robot.stopMotion();
247  exit(1);
248  }
249 
250  // Update the point feature from the dot location
251  for (i = 0; i < 4; i++)
252  vpFeatureBuilder::create(p[i], cam, dot[i]);
253 
254  // Get the jacobian of the robot
255  robot.get_eJe(eJe);
256  // Update this jacobian in the task structure. It will be used to
257  // compute the velocity skew (as an articular velocity) qdot = -lambda *
258  // L^+ * cVe * eJe * (s-s*)
259  task.set_eJe(eJe);
260 
261  vpColVector v;
262  // Compute the visual servoing skew vector
263  v = task.computeControlLaw();
264 
265  // Display the current and desired feature points in the image display
266  vpServoDisplay::display(task, cam, I);
267 
268  // Apply the computed joint velocities to the robot
270 
271  // Save velocities applied to the robot in the log file
272  // v[0], v[1], v[2] correspond to joint translation velocities in m/s
273  // v[3], v[4], v[5] correspond to joint rotation velocities in rad/s
274  flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";
275 
276  // Get the measured joint velocities of the robot
277  vpColVector qvel;
279  // Save measured joint velocities of the robot in the log file:
280  // - qvel[0], qvel[1], qvel[2] correspond to measured joint translation
281  // velocities in m/s
282  // - qvel[3], qvel[4], qvel[5] correspond to measured joint rotation
283  // velocities in rad/s
284  flog << qvel[0] << " " << qvel[1] << " " << qvel[2] << " " << qvel[3] << " " << qvel[4] << " " << qvel[5] << " ";
285 
286  // Get the measured joint positions of the robot
287  vpColVector q;
289  // Save measured joint positions of the robot in the log file
290  // - q[0], q[1], q[2] correspond to measured joint translation
291  // positions in m
292  // - q[3], q[4], q[5] correspond to measured joint rotation
293  // positions in rad
294  flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";
295 
296  // Save feature error (s-s*) for the 4 feature points. For each feature
297  // point, we have 2 errors (along x and y axis). This error is
298  // expressed in meters in the camera frame
299  flog << (task.getError()).t() << std::endl;
300 
301  // Flush the display
302  vpDisplay::flush(I);
303 
304  // std::cout << "|| s - s* || = " << ( task.getError() ).sumSquare() <<
305  // std::endl;
306  }
307 
308  std::cout << "Display task information: " << std::endl;
309  task.print();
310  flog.close(); // Close the log file
311  return EXIT_SUCCESS;
312  }
313  catch (const vpException &e) {
314  flog.close(); // Close the log file
315  std::cout << "Catch an exception: " << e.getMessage() << std::endl;
316  return EXIT_FAILURE;
317  }
318 }
319 
320 #else
321 int main()
322 {
323  std::cout << "You do not have an Viper 850 robot connected to your computer..." << std::endl;
324  return EXIT_SUCCESS;
325 }
326 #endif
void getPosition(const vpRobot::vpControlFrameType frame, vpColVector &position)
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:153
static void makeDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:482
void buildFrom(double x, double y, double Z)
void getCameraParameters(vpCameraParameters &cam, const unsigned int &image_width, const unsigned int &image_height) const
Definition: vpViper850.cpp:558
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:490
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:506
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:150
void track(const vpImage< unsigned char > &I)
Definition: vpDot.cpp:770
vpRobot::vpRobotStateType setRobotState(vpRobot::vpRobotStateType newState)
error that can be emited by ViSP classes.
Definition: vpException.h:71
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void get_eJe(vpMatrix &eJe)
static const vpColor green
Definition: vpColor.h:220
static void flush(const vpImage< unsigned char > &I)
static bool checkDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:332
vpImagePoint getCog() const
Definition: vpDot.h:247
Initialize the velocity controller.
Definition: vpRobot.h:66
vpColVector getError() const
Definition: vpServo.h:278
vpColVector computeControlLaw()
Definition: vpServo.cpp:929
#define vpTRACE
Definition: vpDebug.h:416
static void display(const vpImage< unsigned char > &I)
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Generic class defining intrinsic camera parameters.
void setLambda(double c)
Definition: vpServo.h:404
static std::string getUserName()
Definition: vpIoTools.cpp:228
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:134
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:567
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &velocity)
void get_cVe(vpVelocityTwistMatrix &cVe) const
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
void getVelocity(const vpRobot::vpControlFrameType frame, vpColVector &velocity)
Implementation of column vector and the associated operations.
Definition: vpColVector.h:130
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:448
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:306
This tracker is meant to track a dot (connected pixels with same gray level) on a vpImage...
Definition: vpDot.h:115
Class for firewire ieee1394 video devices using libdc1394-2.x api.
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:87
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
void setGraphics(bool activate)
Definition: vpDot.h:361
const char * getMessage() const
Definition: vpException.cpp:90
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:218
void initTracking(const vpImage< unsigned char > &I)
Definition: vpDot.cpp:635
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
static const vpColor blue
Definition: vpColor.h:223