Visual Servoing Platform  version 3.4.0
servoSimuSphere2DCamVelocityDisplaySecondaryTask.cpp

Servo a sphere:

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2019 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Simulation of a 2D visual servoing on a sphere.
*
* Authors:
* Eric Marchand
* Fabien Spindler
*
*****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpSphere.h>
#include <visp3/gui/vpDisplayD3D.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpProjectionDisplay.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureEllipse.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
// List of allowed command line options
#define GETOPTARGS "cdho"
void usage(const char *name, const char *badparam);
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Simulation of a 2D visual servoing on a sphere:\n\
- eye-in-hand control law,\n\
- velocity computed in the camera frame,\n\
- display the camera view,\n\
- a secondary task is the added.\n\
\n\
SYNOPSIS\n\
%s [-c] [-d] [-o] [-h]\n", name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
\n\
-c\n\
Disable the mouse click. Useful to automaze the \n\
execution of this program without humain intervention.\n\
\n\
-d \n\
Turn off the display.\n\
\n\
-o \n\
Disable new projection operator usage for secondary task.\n\
\n\
-h\n\
Print the help.\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display, bool &new_proj_operator)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'c':
click_allowed = false;
break;
case 'd':
display = false;
break;
case 'o':
new_proj_operator = false;
break;
case 'h':
usage(argv[0], NULL);
return false;
default:
usage(argv[0], optarg_);
return false;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
try {
bool opt_display = true;
bool opt_click_allowed = true;
bool opt_new_proj_operator = true;
// Read the command line options
if (getOptions(argc, argv, opt_click_allowed, opt_display, opt_new_proj_operator) == false) {
return(EXIT_FAILURE);
}
vpImage<unsigned char> I(512, 512, 0);
vpImage<unsigned char> Iext(512, 512, 0);
// We open a window if a display is available
#ifdef VISP_HAVE_DISPLAY
# if defined VISP_HAVE_X11
vpDisplayX displayI;
vpDisplayX displayExt;
# elif defined VISP_HAVE_GTK
vpDisplayGTK displayI;
vpDisplayGTK displayExt;
# elif defined VISP_HAVE_GDI
vpDisplayGDI displayI;
vpDisplayGDI displayExt;
# elif defined VISP_HAVE_OPENCV
vpDisplayOpenCV displayI;
vpDisplayOpenCV displayExt;
# elif defined VISP_HAVE_D3D9
vpDisplayD3D displayI;
vpDisplayD3D displayExt;
# endif
#endif
if (opt_display) {
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV)
// Display size is automatically defined by the image (I) size
displayI.init(I, 100, 100, "Camera view...");
displayExt.init(Iext, 130 + static_cast<int>(I.getWidth()), 100, "External view");
#endif
// Display the image
// The image class has a member that specify a pointer toward
// the display that has been initialized in the display declaration
// therefore is is no longuer necessary to make a reference to the
// display variable.
}
#ifdef VISP_HAVE_DISPLAY
vpProjectionDisplay externalview;
#endif
double px = 600, py = 600;
double u0 = I.getWidth()/2., v0 = I.getHeight() / 2.;
vpCameraParameters cam(px, py, u0, v0);
vpServo task;
// sets the initial camera location
cMo[0][3] = 0.1;
cMo[1][3] = 0.2;
cMo[2][3] = 2;
// Compute the position of the object in the world frame
robot.getPosition(wMc);
wMo = wMc * cMo;
cMod[0][3] = 0;
cMod[1][3] = 0;
cMod[2][3] = 1;
// sets the sphere coordinates in the world frame
vpSphere sphere;
sphere.setWorldCoordinates(0, 0, 0, 0.1);
#ifdef VISP_HAVE_DISPLAY
externalview.insert(sphere);
#endif
// sets the desired position of the visual feature
sphere.track(cMod);
// computes the sphere coordinates in the camera frame and its 2D
// coordinates sets the current position of the visual feature
sphere.track(cMo);
// define the task
// - we want an eye-in-hand control law
// - robot is controlled in the camera frame
// we want to see a sphere on a sphere
std::cout << std::endl;
task.addFeature(p, pd);
// set the gain
task.setLambda(1);
// Set the point of view of the external view
vpHomogeneousMatrix cextMo(0, 0, 4, vpMath::rad(40), vpMath::rad(10), vpMath::rad(60));
// Display the initial scene
vpServoDisplay::display(task, cam, I);
#ifdef VISP_HAVE_DISPLAY
externalview.display(Iext, cextMo, cMo, cam, vpColor::red);
#endif
// Display task information
task.print();
if (opt_display && opt_click_allowed) {
vpDisplay::displayText(I, 20, 20, "Click to start visual servo...", vpColor::white);
}
unsigned int iter = 0;
bool stop = false;
bool start_secondary_task = false;
// loop
while (iter++ < 2000 && !stop) {
std::cout << "---------------------------------------------" << iter << std::endl;
// get the robot position
robot.getPosition(wMc);
// Compute the position of the object frame in the camera frame
cMo = wMc.inverse() * wMo;
// new sphere position: retrieve x,y and Z of the vpSphere structure
sphere.track(cMo);
if (opt_display) {
vpServoDisplay::display(task, cam, I);
#ifdef VISP_HAVE_DISPLAY
externalview.display(Iext, cextMo, cMo, cam, vpColor::red);
#endif
}
// compute the control law
// Wait primary task convergence before considering secondary task
if (task.getError().sumSquare() < 1e-6) {
start_secondary_task = true;
}
if (start_secondary_task) {
// Only 3 dof are required to achieve primary task: vz, wx, wy
// It remains 3 free dof (vx, vy, wz) that could be used in a secondary task for example to move arround the sphere
vpColVector de2dt(6);
de2dt[0] = 0.50; // vx = 0.50 m/s should also generate a motion on wy = (I-WpW)de2dt[4]
de2dt[1] = 0.25; // vy = 0.25 m/s should generate a motion on wx = (I-WpW)de2dt[3]
de2dt[2] = 1; // vz = 1 m/s should be zero in vz = (I-WpW)de2dt[2]
de2dt[5] = vpMath::rad(10); // wz = 10 rad/s should generate a motion on (I-WpW)de2dt[5]
std::cout << "de2dt :" << de2dt.t() << std::endl;
vpColVector sec = task.secondaryTask(de2dt, opt_new_proj_operator);
std::cout << "(I-WpW)de2dt :" << sec.t() << std::endl;
v += sec;
if (opt_display && opt_click_allowed) {
std::stringstream ss;
ss << std::string("New projection operator: ") + (opt_new_proj_operator ? std::string("yes (use option -o to use old one)") : std::string("no"));
vpDisplay::displayText(I, 20, 20, "Secondary task enabled: yes", vpColor::white);
vpDisplay::displayText(I, 40, 20, ss.str(), vpColor::white);
}
}
else {
if (opt_display && opt_click_allowed) {
vpDisplay::displayText(I, 20, 20, "Secondary task enabled: no", vpColor::white);
}
}
// send the camera velocity to the controller
std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
if (opt_display) {
vpDisplay::displayText(I, 60, 20, "Click to stop visual servo...", vpColor::white);
if (vpDisplay::getClick(I, false)) {
stop = true;
}
}
}
if (opt_display && opt_click_allowed) {
vpServoDisplay::display(task, cam, I);
vpDisplay::displayText(I, 20, 20, "Click to quit...", vpColor::white);
}
// Display task information
task.print();
return EXIT_SUCCESS;
} catch (const vpException &e) {
std::cout << "Catch a ViSP exception: " << e << std::endl;
return EXIT_FAILURE;
}
#else
(void)argc;
(void)argv;
std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
return EXIT_SUCCESS;
#endif
}