Visual Servoing Platform  version 3.4.0
servoSimuPoint2DCamVelocity2.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a 2D visual servoing on a point.
33  *
34  * Authors:
35  * Eric Marchand
36  * Fabien Spindler
37  *
38  *****************************************************************************/
39 
56 #include <stdio.h>
57 #include <stdlib.h>
58 
59 #include <visp3/core/vpHomogeneousMatrix.h>
60 #include <visp3/core/vpMath.h>
61 #include <visp3/io/vpParseArgv.h>
62 #include <visp3/robot/vpSimulatorCamera.h>
63 #include <visp3/visual_features/vpFeatureBuilder.h>
64 #include <visp3/visual_features/vpFeaturePoint.h>
65 #include <visp3/vs/vpServo.h>
66 
67 // List of allowed command line options
68 #define GETOPTARGS "h"
69 
70 void usage(const char *name, const char *badparam);
71 bool getOptions(int argc, const char **argv);
72 
81 void usage(const char *name, const char *badparam)
82 {
83  fprintf(stdout, "\n\
84 Simulation of a 2D visual servoing on a point:\n\
85 - eye-in-hand control law,\n\
86 - articular velocity are computed,\n\
87 - without display.\n\
88 \n\
89 SYNOPSIS\n\
90  %s [-h]\n", name);
91 
92  fprintf(stdout, "\n\
93 OPTIONS: Default\n\
94 \n\
95  -h\n\
96  Print the help.\n");
97 
98  if (badparam)
99  fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
100 }
101 
112 bool getOptions(int argc, const char **argv)
113 {
114  const char *optarg_;
115  int c;
116  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
117 
118  switch (c) {
119  case 'h':
120  usage(argv[0], NULL);
121  return false;
122 
123  default:
124  usage(argv[0], optarg_);
125  return false;
126  }
127  }
128 
129  if ((c == 1) || (c == -1)) {
130  // standalone param or error
131  usage(argv[0], NULL);
132  std::cerr << "ERROR: " << std::endl;
133  std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
134  return false;
135  }
136 
137  return true;
138 }
139 
140 int main(int argc, const char **argv)
141 {
142 #if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
143  try {
144  // Read the command line options
145  if (getOptions(argc, argv) == false) {
146  exit(-1);
147  }
148 
149  vpServo task;
150  vpSimulatorCamera robot;
151 
152  std::cout << std::endl;
153  std::cout << "-------------------------------------------------------" << std::endl;
154  std::cout << " Test program for vpServo " << std::endl;
155  std::cout << " Eye-in-hand task control, articular velocity are computed" << std::endl;
156  std::cout << " Simulation " << std::endl;
157  std::cout << " task : servo a point " << std::endl;
158  std::cout << "-------------------------------------------------------" << std::endl;
159  std::cout << std::endl;
160 
161  // sets the initial camera location
163  cMo[0][3] = 0.1;
164  cMo[1][3] = 0.2;
165  cMo[2][3] = 2;
166  // Compute the position of the object in the world frame
167  vpHomogeneousMatrix wMc, wMo;
168  robot.getPosition(wMc);
169  wMo = wMc * cMo;
170 
171  // sets the point coordinates in the world frame
172  vpPoint point(0, 0, 0);
173 
174  // computes the point coordinates in the camera frame and its 2D
175  // coordinates
176  point.track(cMo);
177 
178  // sets the current position of the visual feature
179  vpFeaturePoint p;
180  vpFeatureBuilder::create(p, point); // retrieve x,y and Z of the vpPoint structure
181 
182  // sets the desired position of the visual feature
183  vpFeaturePoint pd;
184  pd.buildFrom(0, 0, 1);
185 
186  // define the task
187  // - we want an eye-in-hand control law
188  // - articular velocity are computed
191 
192  // Set the position of the end-effector frame in the camera frame
194  vpVelocityTwistMatrix cVe(cMe);
195  task.set_cVe(cVe);
196 
197  // Set the Jacobian (expressed in the end-effector frame)
198  vpMatrix eJe;
199  robot.get_eJe(eJe);
200  task.set_eJe(eJe);
201 
202  // we want to see a point on a point
203  task.addFeature(p, pd);
204 
205  // set the gain
206  task.setLambda(1);
207  // Display task information
208  task.print();
209 
210  unsigned int iter = 0;
211  // loop
212  while (iter++ < 100) {
213  std::cout << "---------------------------------------------" << iter << std::endl;
214  vpColVector v;
215 
216  // Set the Jacobian (expressed in the end-effector frame)
217  // since q is modified eJe is modified
218  robot.get_eJe(eJe);
219  task.set_eJe(eJe);
220 
221  // get the robot position
222  robot.getPosition(wMc);
223  // Compute the position of the object frame in the camera frame
224  cMo = wMc.inverse() * wMo;
225 
226  // new point position
227  point.track(cMo);
228  vpFeatureBuilder::create(p, point); // retrieve x,y and Z of the vpPoint structure
229  pd.buildFrom(0, 0, 1); // Since vpServo::MEAN interaction matrix is
230  // used, we need to update the desired feature at
231  // each iteration
232 
233  // compute the control law
234  v = task.computeControlLaw();
235 
236  // send the camera velocity to the controller
238 
239  std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
240  }
241 
242  // Display task information
243  task.print();
244  return EXIT_SUCCESS;
245  } catch (const vpException &e) {
246  std::cout << "Catch a ViSP exception: " << e << std::endl;
247  return EXIT_FAILURE;
248  }
249 #else
250  (void)argc;
251  (void)argv;
252  std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
253  return EXIT_SUCCESS;
254 #endif
255 }
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:153
void buildFrom(double x, double y, double Z)
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
Implementation of an homogeneous matrix and operations on such kind of matrices.
Class that defines the simplest robot: a free flying camera.
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:490
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:506
error that can be emited by ViSP classes.
Definition: vpException.h:71
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:81
vpColVector getError() const
Definition: vpServo.h:278
vpColVector computeControlLaw()
Definition: vpServo.cpp:929
void setLambda(double c)
Definition: vpServo.h:404
vpHomogeneousMatrix getPosition() const
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:567
Implementation of column vector and the associated operations.
Definition: vpColVector.h:130
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:448
vpHomogeneousMatrix inverse() const
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:306
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
void get_eJe(vpMatrix &eJe)
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:218