Visual Servoing Platform  version 3.4.0
servoSimuFourPoints2DCamVelocityDisplay.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a 2D visual servoing using 4 points as visual feature.
33  *
34  * Authors:
35  * Eric Marchand
36  * Fabien Spindler
37  *
38  *****************************************************************************/
39 
56 #include <iostream>
57 
58 #include <visp3/core/vpConfig.h>
59 
60 #if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV)) \
61  && (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
62 
63 #include <stdio.h>
64 #include <stdlib.h>
65 
66 #include <visp3/core/vpCameraParameters.h>
67 #include <visp3/core/vpHomogeneousMatrix.h>
68 #include <visp3/core/vpImage.h>
69 #include <visp3/core/vpMath.h>
70 #include <visp3/gui/vpDisplayGDI.h>
71 #include <visp3/gui/vpDisplayGTK.h>
72 #include <visp3/gui/vpDisplayOpenCV.h>
73 #include <visp3/gui/vpDisplayX.h>
74 #include <visp3/gui/vpProjectionDisplay.h>
75 #include <visp3/io/vpParseArgv.h>
76 #include <visp3/robot/vpSimulatorCamera.h>
77 #include <visp3/visual_features/vpFeatureBuilder.h>
78 #include <visp3/visual_features/vpFeaturePoint.h>
79 #include <visp3/vs/vpServo.h>
80 #include <visp3/vs/vpServoDisplay.h>
81 
82 // List of allowed command line options
83 #define GETOPTARGS "cdh"
84 
85 void usage(const char *name, const char *badparam);
86 bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);
87 
96 void usage(const char *name, const char *badparam)
97 {
98  fprintf(stdout, "\n\
99 Tests a control law with the following characteristics:\n\
100 - eye-in-hand control\n\
101 - articular velocity are computed\n\
102 - servo on 4 points,\n\
103 - internal and external camera view displays.\n\
104  \n\
105 SYNOPSIS\n\
106  %s [-c] [-d] [-h]\n", name);
107 
108  fprintf(stdout, "\n\
109 OPTIONS: Default\n\
110  -c\n\
111  Disable the mouse click. Useful to automaze the \n\
112  execution of this program without humain intervention.\n\
113  \n\
114  -d \n\
115  Turn off the display.\n\
116  \n\
117  -h\n\
118  Print the help.\n");
119 
120  if (badparam)
121  fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
122 }
135 bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display)
136 {
137  const char *optarg_;
138  int c;
139  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
140 
141  switch (c) {
142  case 'c':
143  click_allowed = false;
144  break;
145  case 'd':
146  display = false;
147  break;
148  case 'h':
149  usage(argv[0], NULL);
150  return false;
151 
152  default:
153  usage(argv[0], optarg_);
154  return false;
155  }
156  }
157 
158  if ((c == 1) || (c == -1)) {
159  // standalone param or error
160  usage(argv[0], NULL);
161  std::cerr << "ERROR: " << std::endl;
162  std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
163  return false;
164  }
165 
166  return true;
167 }
168 
169 int main(int argc, const char **argv)
170 {
171  try {
172  bool opt_click_allowed = true;
173  bool opt_display = true;
174 
175  // Read the command line options
176  if (getOptions(argc, argv, opt_click_allowed, opt_display) == false) {
177  exit(-1);
178  }
179 
180 // We open two displays, one for the internal camera view, the other one for
181 // the external view, using either X11, GTK or GDI.
182 #if defined VISP_HAVE_X11
183  vpDisplayX displayInt;
184  vpDisplayX displayExt;
185 #elif defined VISP_HAVE_GTK
186  vpDisplayGTK displayInt;
187  vpDisplayGTK displayExt;
188 #elif defined VISP_HAVE_GDI
189  vpDisplayGDI displayInt;
190  vpDisplayGDI displayExt;
191 #elif defined VISP_HAVE_OPENCV
192  vpDisplayOpenCV displayInt;
193  vpDisplayOpenCV displayExt;
194 #endif
195 
196  // open a display for the visualization
197 
198  vpImage<unsigned char> Iint(300, 300, 0);
199  vpImage<unsigned char> Iext(300, 300, 0);
200 
201  if (opt_display) {
202  displayInt.init(Iint, 0, 0, "Internal view");
203  displayExt.init(Iext, 330, 000, "External view");
204  }
205  vpProjectionDisplay externalview;
206 
207  double px = 500, py = 500;
208  double u0 = 150, v0 = 160;
209 
210  vpCameraParameters cam(px, py, u0, v0);
211 
212  vpServo task;
213  vpSimulatorCamera robot;
214 
215  std::cout << std::endl;
216  std::cout << "----------------------------------------------" << std::endl;
217  std::cout << " Test program for vpServo " << std::endl;
218  std::cout << " Eye-in-hand task control, articular velocity are computed" << std::endl;
219  std::cout << " Simulation " << std::endl;
220  std::cout << " task : servo 4 points " << std::endl;
221  std::cout << "----------------------------------------------" << std::endl;
222  std::cout << std::endl;
223 
224  // sets the initial camera location
225  vpHomogeneousMatrix cMo(-0.1, -0.1, 1, vpMath::rad(40), vpMath::rad(10), vpMath::rad(60));
226 
227  // Compute the position of the object in the world frame
228  vpHomogeneousMatrix wMc, wMo;
229  robot.getPosition(wMc);
230  wMo = wMc * cMo;
231 
232  vpHomogeneousMatrix cextMo(0, 0, 2, 0, 0, 0); // vpMath::rad(40), vpMath::rad(10), vpMath::rad(60));
233 
234  // sets the point coordinates in the object frame
235  vpPoint point[4];
236  point[0].setWorldCoordinates(-0.1, -0.1, 0);
237  point[1].setWorldCoordinates(0.1, -0.1, 0);
238  point[2].setWorldCoordinates(0.1, 0.1, 0);
239  point[3].setWorldCoordinates(-0.1, 0.1, 0);
240 
241  for (unsigned i = 0; i < 4; i++)
242  externalview.insert(point[i]);
243 
244  // computes the point coordinates in the camera frame and its 2D
245  // coordinates
246  for (unsigned i = 0; i < 4; i++)
247  point[i].track(cMo);
248 
249  // sets the desired position of the point
250  vpFeaturePoint p[4];
251  for (unsigned i = 0; i < 4; i++)
252  vpFeatureBuilder::create(p[i], point[i]); // retrieve x,y and Z of the vpPoint structure
253 
254  // sets the desired position of the feature point s*
255  vpFeaturePoint pd[4];
256 
257  pd[0].buildFrom(-0.1, -0.1, 1);
258  pd[1].buildFrom(0.1, -0.1, 1);
259  pd[2].buildFrom(0.1, 0.1, 1);
260  pd[3].buildFrom(-0.1, 0.1, 1);
261 
262  // define the task
263  // - we want an eye-in-hand control law
264  // - articular velocity are computed
267 
268  // Set the position of the end-effector frame in the camera frame as identity
270  vpVelocityTwistMatrix cVe(cMe);
271  task.set_cVe(cVe);
272 
273  // Set the Jacobian (expressed in the end-effector frame
274  vpMatrix eJe;
275  robot.get_eJe(eJe);
276  task.set_eJe(eJe);
277 
278  // we want to see a point on a point
279  for (unsigned i = 0; i < 4; i++)
280  task.addFeature(p[i], pd[i]);
281 
282  // set the gain
283  task.setLambda(1);
284 
285  // Display task information
286  task.print();
287 
288  unsigned int iter = 0;
289  // loop
290  while (iter++ < 200) {
291  std::cout << "---------------------------------------------" << iter << std::endl;
292  vpColVector v;
293 
294  // Set the Jacobian (expressed in the end-effector frame)
295  // since q is modified eJe is modified
296  robot.get_eJe(eJe);
297  task.set_eJe(eJe);
298 
299  // get the robot position
300  robot.getPosition(wMc);
301  // Compute the position of the object frame in the camera frame
302  cMo = wMc.inverse() * wMo;
303 
304  // update new point position and corresponding features
305  for (unsigned i = 0; i < 4; i++) {
306  point[i].track(cMo);
307  // retrieve x,y and Z of the vpPoint structure
308  vpFeatureBuilder::create(p[i], point[i]);
309  }
310  // since vpServo::MEAN interaction matrix is used, we need also to
311  // update the desired features at each iteration
312  pd[0].buildFrom(-0.1, -0.1, 1);
313  pd[1].buildFrom(0.1, -0.1, 1);
314  pd[2].buildFrom(0.1, 0.1, 1);
315  pd[3].buildFrom(-0.1, 0.1, 1);
316 
317  if (opt_display) {
318  vpDisplay::display(Iint);
319  vpDisplay::display(Iext);
320  vpServoDisplay::display(task, cam, Iint);
321  externalview.display(Iext, cextMo, cMo, cam, vpColor::green);
322  vpDisplay::flush(Iint);
323  vpDisplay::flush(Iext);
324  }
325 
326  // compute the control law
327  v = task.computeControlLaw();
328 
329  // send the camera velocity to the controller
331 
332  std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
333  }
334 
335  // Display task information
336  task.print();
337 
338  std::cout << "Final robot position with respect to the object frame:\n";
339  cMo.print();
340 
341  if (opt_display && opt_click_allowed) {
342  vpDisplay::displayText(Iint, 20, 20, "Click to quit...", vpColor::white);
343  vpDisplay::flush(Iint);
344  vpDisplay::getClick(Iint);
345  }
346  return EXIT_SUCCESS;
347  } catch (const vpException &e) {
348  std::cout << "Catch a ViSP exception: " << e << std::endl;
349  return EXIT_FAILURE;
350  }
351 }
352 #elif !(defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
353 int main()
354 {
355  std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
356  return EXIT_SUCCESS;
357 }
358 #else
359 int main()
360 {
361  std::cout << "You do not have X11, or GTK, or GDI (Graphical Device Interface) functionalities to display images..." << std::endl;
362  std::cout << "Tip if you are on a unix-like system:" << std::endl;
363  std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
364  std::cout << "Tip if you are on a windows-like system:" << std::endl;
365  std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
366  return EXIT_SUCCESS;
367 }
368 #endif
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:153
void display(vpImage< unsigned char > &I, const vpHomogeneousMatrix &cextMo, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, const vpColor &color, const bool &displayTraj=false, unsigned int thickness=1)
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:113
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
void buildFrom(double x, double y, double Z)
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
Implementation of an homogeneous matrix and operations on such kind of matrices.
Class that defines the simplest robot: a free flying camera.
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:490
Display for windows using GDI (available on any windows 32 platform).
Definition: vpDisplayGDI.h:128
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:506
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:150
error that can be emited by ViSP classes.
Definition: vpException.h:71
void init(vpImage< unsigned char > &I, int winx=-1, int winy=-1, const std::string &title="")
void track(const vpHomogeneousMatrix &cMo)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
static const vpColor green
Definition: vpColor.h:220
static void flush(const vpImage< unsigned char > &I)
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:81
vpColVector getError() const
Definition: vpServo.h:278
vpColVector computeControlLaw()
Definition: vpServo.cpp:929
static void display(const vpImage< unsigned char > &I)
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Generic class defining intrinsic camera parameters.
void setLambda(double c)
Definition: vpServo.h:404
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:134
void insert(vpForwardProjection &fp)
vpHomogeneousMatrix getPosition() const
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:567
static double rad(double deg)
Definition: vpMath.h:110
Implementation of column vector and the associated operations.
Definition: vpColVector.h:130
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:448
vpHomogeneousMatrix inverse() const
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:306
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
void get_eJe(vpMatrix &eJe)
interface with the image for feature display
static const vpColor white
Definition: vpColor.h:212
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:218
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)